Emma Jane Hogbin Westby %
¥ & R2 HR

1T B A MERY Git (3 ensR)

Git for Teams

Emma Jane Hogbin Westby &

Beijing » Cambridge « Farnham « KéIn + Sebastopol « Tokyo O'REILLY"

O'Reilly Media, Inc. 24X IR A S H AR AL H AR

MR HREAFHMAE

BEHENS B (CIP) ¥ 1E

AT HAUMER Git: T30/ ()X - fif - B E -
F5 #r#F b (Emma Jane Hogbin Westby)3 . — 2 El A, —
B R R A, 20171

54 JR X : Git for Teams
ISBN 978 -7- 5641 - 6867 — 4

I.OH- 0.0X-- .0%#TAEREFi&
- N. OTP311.561

[R A B 50 CIP B4 5 (2016) 58 294339 5
El5:10-2015-255 5

© 2015 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2017. Authorized reprint of the original English edition, 2015 O'Reilly Media, Inc., the owner of all rights to

publish and sell the same.
All rights reserved including the rights of reproduction in whole or in part in any form.
3 LB A & O'Reilly Media, Inc. th & 2015,

ELHPIRG R A KF HIRAR B IR 2017, S P RRA A B B kAR E RO TH &
—— O'Reilly Media, Inc.8 % T ,

R FR A o AT Fo @A T R A G AE AT 5 Ao o B R AT UAEAT I K E 4

T H BAME R Git(F Bl RO

W E AT . A B K2 H At
H at: BRI 2 S 1B % : 210096
WO A EH

hit: http//www.seupress.com

& &
H
=
x

: press@ seupress.com

« F M T RS = ENRIA BRA A
s 787 T X 980 Z K 16 FF 4
172225

: 436 T

20174 1 ASS AR

: 2017 4F 1 A% 1 KERRI

: ISBN 978 — 7 - 5641 — 6867 — 4

: 82.00 76

MEIFNHEHB
SAEFFERFI

ArEBEANE RS EEESENTER. BIFUEE) . 025- 83791830

Foreword

At the time of Git’s inception, the Linux kernel development had used the proprietary
version control system BitKeeper for several years, with great success. But there was
one problem: some Linux developers took exception with the proprietary nature of
their version control system and what ensued was an epic flame war. Out of this con-
flict, the free BitKeeper license for Linux developers was revoked, and Git was born.
Linus Torvalds himself took two weeks off from working on Linux, originally to
search for a replacement for BitKeeper. Failing to find any that met his criteria, he
instead wrote the first, very rudimentary version of what we now call Git: tiny pro-
grams cobbled together with shell scripts, Unix style. An ironic twist is that the dis-
tributed nature of Git was implemented using rsync, a tool which in turn had been
developed by the very Linux developer who triggered the fallout with BitKeeper.

As to myself, I was fascinated by the simplicity of Git’s data structures and got drawn
in early on, first by working on Git's portability, then on more and more general
improvements, including the invention of the “interactive rebase” (sorry for the
name!), and ultimately maintaining the Windows port of Git. For the past 10 years, 1
used Git almost daily as a life science researcher, as part of different teams ranging
from being the designated coder in interdisciplinary projects to leading highly dis-
tributed Open Source projects.

My first contact with Emma was at the Git Merge conference in Paris celebrating Git’s
10th birthday, where she gave a compelling talk titled “Teaching People Git” (http:/
bit.ly/teaching-people-git). This talk left quite the impression on me, reflecting Emma’s
broad skill set and experience in teaching and project management.

Reading Git for Teams, I learned a lot from its unique perspective that emphasizes
how Git can facilitate teamwork. It sounds so simple, but all those years, I had been
focusing on technical details, and I had been teaching Git in what must be one of the
most frustrating ways: from the ground up. By focusing on workflows and interac-
tions between roles, Git for Teams guides you, the reader, to understand your exact

needs within your particular projects. Equipped with this knowledge, you will then
learn the fun part: how to use Git to best support your needs.

Just like her talk, Emma’s writing style is very enjoyable, making this book both edu-
cative and fun to read. It gave me valuable insights into my daily work. Whatever
your role in your daily work, let this book be more than just a manual. Explore the
different ways teams can work together, the ways a modern version control system
can help moving projects forward, and let it inspire you to unleash the full power of
Git to support you in what you want to do.

—Dr. Johannes Schindelin
Git for Windows maintainer
August 2015

Cologne, Germany

xii | Foreword

Foreword

It is difficult to overstate the importance of version control.

I believe that it is as important as the inventions of the chalkboard and of the book for
multiplying the power of people to create together.

Over my career, | have watched the approach to version control systems in software
development advance from resistance to ubiquity, and have watched the underlying
technology make quantum jumps, each jump accelerating the value of the work we
create together and the speed at which we create it. We are doing more, faster, with
more people.

The latest jump, exemplified by Git, imposes almost no arbitrary constraints on a
workflow. Thus, we have to discover and share the workflows that suit our people and
our organizations, instead of living with past awkward workflows that suited our
machines. Some of those workflows are explored in this book. I'm sure that more will
be discovered in the future.

It is also difficult to overstate the importance and difficulty of education. Not merely
memorizing facts or merely training tasks, but the deeper kind of education: how to
think a certain way, to understand why to think that way, and how to share those
thoughts with someone else.

Using a version control system properly is a way to think: to structure, remember,
and share thoughts, at the level of depth and rigor demanded by the exhausting craft
of writing software. Without that understanding, using Git will be, at best, “magical
incantations”, used by rote, and full of unknown dangers. With that understanding,
Git can become almost invisible, leaving instead the patterns of working up the intri-
cate spells of symbols that are the magic of software.

Xiii

This book will help you to educate yourself, to gain that understanding, and to do

that work.
—Mark Atwood
Director of Open Source Engagement,
Hewlett-Packard Company
August 2015
Seattle, WA
xiv | Foreword

Preface

For nearly two decades, I've been working on teams of one or more in a distributed
fashion. My first paid job as a web developer was in the mid-"90s. At the time, I main-
tained versions of my files by simply changing the names to denote a new version. My
workspace was littered with files that had unusual extensions; v4.old-er.bak was an all
too common sight. I wasn't able to easily track my work. On one project, which was a
particularly challenging one for me, I resorted to the copyediting techniques I used
for my essays: I'd print out the Perl scripts I was working on, and put the pages into a
ring binder. I'd then mark up my scripts with different colors of pen and transcribe
the changes back into my text editor. (I wish I had photos to share.) I tracked versions
by flipping through the binder to find previous versions of the script. I had no idea
how to set up an actual version control system (VCS), but I was obsessive about not
losing good work if a refactoring failed.

When I started working with other developers, either for open source projects or cli-
ent work, I was never the first developer on the scene and there was always some kind
of version control in place by the time I got there—typically Concurrent Versions
System (CVS). It wasn’t the easiest thing to use, but compared to my ring binder of
changes, it was definitely more scalable for the distributed teams that I worked with.
Very quickly I came to value the commit messages, and the ease of being able to
review the work others were doing. It motivated me to watch others commit their
work to the repository. I didn’t want others to think I was slacking oft!

Meanwhile, I'd been teaching web development at a couple of different community
colleges. In 2004, I had my first opportunity to teach version control in a year-long
program designed by Bernie Monette, at Humber College. The class was split into
several groups. In the first semester, the students sketched out a development plan for
a website. In the second semester, the teams were mixed up, and the new teams were
asked to build the site described by the previous team. In the third and final semester,
the groups were shuffled again, and the final task was to do bug fixing and quality
assurance on the built site. Each team was forced to use version control to track their
work. The students, who had no prior programming experience, weren't thrilled with

Xv

having to use version control because they felt it got in the way of doing work. But it
also made it easier because they never accidentally overwrote their classmates’ work.
It taught me a lot about how to motivate people to use a tool that didn't feel like it was
core to the job at hand.

In the decade since that class, I've learned a lot about how to teach version control,
and a lot about best practices in adult education. This book is the culmination of what
I've learned about how to work efficiently with others when using version control. I
encourage you throughout the book to do whatever is best for your team. There are
no Git police who will show up at your door and tell you “you’re doing it wrong”
That said, wherever I can, I explain to you “the Git way” of doing things so that you
have some guidance on where you might want to start with your team, or what you
might want to grow into. Using “common” ways of working will help you onboard
others who've previously used similar techniques.

This book won’t be for everyone. This book is for people who love to plan a route,
and then follow the clearly defined road ahead. My hope is that, if nothing else, this
book helps to fill the gaps that have been missing in Git resources to date. It's not so
much a manual for the software as a manual for how teams collaborate. If your team
of one (or more) finds bits of this book confusing, I hope you'll let me know
(emma@gitforteams.com); and if you find it useful, I hope you’ll let the world know.

Acknowledgments

Several years ago, in a little bar off the side of a graveyard in Prague, Carl Wiedemann
indulged my questions about Git. Thank you, Carl. Your enthusiasm motivated me to
convert my frustration with Git into resources to help others avoid the painful pro-
cess I'd experienced when learning Git.

I had the wonderful fortune to work with Joe Shindelar at my first job-job after a dec-
ade of self-employment. Joe, your passion for excellence has raised the bar for my
own work. I am grateful for your patience and leadership. This book was born out of
the conversations we had about leadership, team structures, and the Git documenta-
tion we created for the Drupalize.Me team. Thank you.

O’Reilly found the excellent Christophe Portneuve to serve as one of my tech review-
ers. Christophe, thank you for your patience as I worked through the first few chap-
ters. Your feedback was invaluable. I am grateful for the conversation we had at Git
Merge, which helped me to clarify the concepts I use in this book—I had lofty goals
of transforming the way people learn Git. I hope this book has become a resource you
will be proud to have been a part of.

Bernie Monette, Martin Poole, Drew McLelland: you gave me a platform to refine my
understanding of version control through your own projects.

xvi | Preface

Lorna Jane Mitchell, your cheerleading is tireless. Thank you for sharing your own
work on Git. It has inspired me to raise the bar even higher.

Much of this book was fueled by 200 Degrees Coffee, a Nottingham-based roaster. My
beverage of choice is a flat white served from 200 Degrees Café, or Divine Coffee at
the Galleries of Justice. Thanks for providing an escape and letting me stay as long as
I needed to.

To the O'Reilly family: you have been superb at handling all of my requests
(and missed deadlines). Thank you Rachel, Heather, Robert, Colleen, Brian, Josh,
Rebecca, Kim, and the countless others who worked behind the scenes to make this
book happen.

To the core Git community: thank you for welcoming me with open arms at Git
Merge in 2015. You embraced my rant from the stage about exploring new ways of
teaching Git. You took my suggestions to heart, and made improvements to the Git
experience. I am looking forward to participating more in the wonderful community
you have been quietly nurturing,

Thank you also to my community of reviewers: Diane Tani, Novella Chiechi, Amy
Brown, Blake Winton, Stuart Langridge, Stewart Russell, Dave Hammond, John Wyn-
stra, Chris Tankersley, Mike Anello, Piotr Sipika, Nancy Deschenes, Robert Day, Dave
Hammond, Sébastien Simard, Tobias Hiep, Nick Gard, Christopher Maneu, Johannes
Schindelin, Edward Thomson, matt j. sorenson, Douwe Maan, Sytse Sijbrandij, Rob
Allen, Steven Pears, Laura Lemay. Your feedback was invaluable.

To my partner, James Westby: thank you for patiently waiting as I finish just one last
thing. This book would not exist without your support and encouragement.

Preface | xvii

Introduction

The book takes a people-first approach to version control. I don't start with a history
of Git; instead, I begin with a 10,000-foot view of how teams can work together. Then
we will circle our way into the commands, ensuring you always know the why behind
the command you're about to type. Sometimes you can save your future self time
(and confusion) by adopting specific routines or workflows. These explanations give
you a holistic understanding of how your work today affects your work tomorrow—
and hopefully make sense out of the near-religious insistence by some people on why
they use Git the way they do.

Part I will be most useful to managers, technical team leads, chief technology officers,
project managers, and technical project managers who need to outline a workflow for
their team.

Good technology comes from great teams. In Chapter 1, you will learn about the
dynamics of creating a great team. By the end of this chapter, you will be able to iden-
tify roles within a team; plan highly effective meetings; recognize key phrases from
people who are out of sync with what your team needs; and apply strategies that will
help you to cultivate empathy and trust within your team.

Set the expectations early for the type of project you are running. In Chapter 2, you
will learn about different permissions strategies used to grant and deny access to a Git
repository. Should team members be allowed to save their work to the repository
without a review, or is it more of a trust and be trusted scenario? Both systems have
their merits, and you’ll learn about them in this chapter.

Make the intentions of your work clear. In Git, you will separate streams of work
with branches. Chapter 3 shows you how to separate each of the ideas your team is
working on through the use of these branches. Of course, you will also need to know
how to bring these disparate pieces of work into a unified piece of software. This
chapter covers some of the more common branching strategies, including GitFlow.

Xix

Write the documentation today that will help you work more efficiently tomorrow.
Chapter 4 is the culmination of all the ideas in Part 1. You will learn how to create
your own documentation and walk through the process of creating and deploying a
simple software product.

Part II will be most useful for developers. This is where (finally!) you will get to learn
how all those Git commands are actually supposed to work. If you're impatient and
want to get your hands on code, you'll do well to skip ahead to Part II and then once
you've completed it, go back and read Part I.

Ground yourself in practical skills. Chapter 5 covers the basics of distributed ver-
sion control. In this chapter you will learn how to create repositories, and track your
changes to files locally through commits, branches, and tags.

Learn to recover from your mistakes. Chapter 6 allows you to explore history revi-
sionism. This chapter covers how to amend commits, remove commits from your
time line, and rebase your work.

Expand your team to be inclusive of others. Now that youre a master of history in
your own repository, it’s time to begin collaborating with others. Chapter 7 will show
you how to track remote changes, upload your code to a shared repository, and
update your local repository with the updates from others.

Through peer review, share the glory and the responsibility of a job well done. In
Chapter 8, you will learn about the process for conducting code reviews with your
team. We'll also cover the commands for a common reviewing methodology, along
with suggestions on how to customize it for your team.

Investigate history; it holds the answer to the problem you’re facing. In Chapter 9,
you will learn some advanced methods to track down bugs using Git. Don't be scared,
though! The commands well be using are no more difficult than anything else you've
done to date.

Finally, Part III gives the how-to for a few of the popular code hosting systems on the
market today. It is aimed at both managers and developers.

Through open collaboration we grow our community. Chapter 10 covers the
mechanics of starting and maintaining an open source project on GitHub.

A team must have a repository of their own if they are to write good code. In
Chapter 11, you will learn how to collaborate on private repositories. This chapter
will be especially useful for those who want to set up a private repository but have
extremely limited funds to pay for private teams on GitHub.

Good fences sometimes do make better neighbors. In Chapter 12, you will learn
how to host your own instance of GitLab, and run projects through it. This is particu-
larly useful for developers who are inside a firewall and cannot access public reposito-
ries on the Internet.

xx | Introduction

This book won't be for everyone. It will be especially frustrating for people who learn
by poking at things and tinkering and exploring. This book, rather, is written for peo-
ple who are a little afraid of things that go bump in the night.

Additional resources and larger versions of several of the flowcharts are available
from the book’s companion site (http://gitforteams.com).

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Introduction | xxi

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
http://gitforteams.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O'Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Git for Teams by Emma Jane Hogbin
Westby (O’Reilly). Copyright 2015 Emma Jane Hogbin Westby, 978-1-491-91118-1”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

r «* Safari Books Online is an on-demand digital library that deliv-
Sa %ka E”i ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O'Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

xxii | Introduction

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/git-for-teams.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Introduction | xxiii

Tabie of Contents

Foreword. ... voivvin o s vbia v s 3 cre Phin | sl e v » demimvolaeid dnladadeda. Xi
Foreword....... v BRI « b waee s ok onis s i s W & wiE ST sk fae o o SETRENGRE Xiii
Preface....... | s oo aab's S ESIC A |- & (1, #F3% k g ot XV
INETOdUCEION. . . oo v vvvrnrreenensnsassssssssessoesnssnannssnsssnans divsseaells o Xix

Partl. Defining Your Workflow

1. Working inTeams.veeeinnueeenneisiinniserrnneesnnnnnenes s iRy o 8
The People on Your Team 2
Thinking Strategies 4
Meeting as a Team 7

Kickoff 8
Tracking Progress 8
Cultivating Empathy 10
Wrap-Up and Retrospectives 11
Teamwork in Terms of Git 12
Summary 13

2. Command and Control.ooveverieeeeennannuuniiiiiiiieeensnaanseasnenes 15

Project Governance 16
Copyright and Contributor Agreements 16
Distribution Licenses 18
Leadership Models 19
Code of Conduct 20

Access Models 20
Dispersed Contributor Model 23
Collocated Contributor Repositories Model 25
Shared Maintenance Model 28
Custom Access Models 30

Summary 31

3. Branching Strategies. SO TR Y R

Understanding Branches 34

Choosing a Convention 35

Conventions 36
Mainline Branch Development 36
Branch-Per-Feature Deployment 39
State Branching 42
Scheduled Deployment 45

Updating Branches 51

Summary 55

4. Workflows That Work......... A P APPSR TP JRMIENL T, |

Evolving Workflows 57
Documenting Your Process 58
Documenting Encoded Decisions 59

Ticket Progression 60

A Basic Workflow 63
Trusted Developers with Peer Review 64
Untrusted Developers with QA Gatekeepers 66

Releasing Software According to Schedule 67
Publishing a Stable Release 67
Ongoing Development 68
Post-Launch Hotfix 69

Collaborating on Nonsoftware Projects 70

Summary 71

Partll. Applying the Commands to Your Workflow
5. Teamsof One.......... i inevan s dT ok ssamrveane o vnvs s aakop RGN 15

Issue-Based Version Control 76

Creating Local Repositories 78
Cloning an Existing Project 80
Converting an Existing Project to Git 81
Initializing an Empty Project 83

vi

| Table of Contents

