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Preface

This text book originated out of a graduate course of lectures in
Quantum Optics given at the University of Waikato and the Univer-
sity of Auckland. A broad range of material is covered in this book
ranging from introductory concepts to current research topics. A
pedagogic description of the techniques of quantum optics and their
applications to physical systems is presented. Particular emphasis is
given to systems where the theoretical predictions have been con-
firmed by experimental observation.

The material presented in this text could be covered in a two
semester course. Alternatively the introductory material in Chaps.
1-6 and selected topics from the later chapters would be suitable for
a one semester course. For example, for material involving the
interaction of light with atoms Chaps. 10-13 would be appropriate,
whereas for material on squeezed light Chaps. 7 and 8 are required.
Chaps. 14-16 describe the interrelation of fundamental topics in
quantum mechanics with quantum optics. The final chapter on
atomic optics gives an introduction to this new and rapidly develop-
ing field.

One of us (D.F. Walls) would like to thank Roy Glauber and
Hermann Haken for the wonderful introduction they gave me to this
exciting field. We would also like to thank our students and colleag-
ues at the Universities of Waikato, Auckland and Queensland who
have contributed so much to the material in this book. In particular,
Crispin Gardiner, Ken McNeil, Howard Carmichael, Peter Drum-
mond, Margaret Reid, Shoukry Hassan, Matthew Collett, Sze Tan,
Alistair Lane, Briafi Kennedy, Craig Savage, Monika Marte, Mur-
ray Holland and Pippa Storey. Finally, we would like to thank all
our friends and colleagues in Quantum Optics too numerous to
name with whom we have shared in the excitement of the develop-
ment of this field.

The completion of this book would not have been possible
without the excellent work of Susanna van der Meer who performed
the word processing through many iterations.

Auckland, New Zealand D.F. WaLLs
St. Lucia, Australia G.J. MILBURN
January 1994
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1. Introduction

The first indication of the quantum nature of light came in 1900 when M. Planck
discovered he could account for the spectral distribution of thermal light by
postulating that the energy of a harmonic oscillator is quantized. Further
evidence was added by A. Einstein who showed in 1905 that the photoelectric
effect could be explained by the hypothesis that the energy of a light beam was
distributed in discrete bundles later known as photons.

Einstein also contributed to the understanding of the absorption and emis-
sion of light from atoms with his development of a phenomenological theory in
1917. This theory was later shown to be a natural consequence of the quantum
theory of electromagnetic radiation.

Despite this early connection with quantum theory physical optics has
developed more or less independently of quantum theory. The vast majority of
physical-optics experiments can adequately be explained using classical theory
of electromagnetic radiation based on Maxwell’s equations. An early attempt to
find quantum effects in an optical interference experiment by G.I. Taylor in 1909
gave a negative result. Taylor’s experiment was an attempt to repeat T. Young’s
famous two slit experiment with one photon incident on the slits. The classical
explanation based on the interference of electric field amplitudes and the
quantum explanation based on the interference of the probability amplitudes for
the photon to pass through either slit coincide in this experiment. Interference
experiments of Young’s type do not distinguish between the predictions of
classical theory and quantum theory. It is only in higher-order interference
experiments involving the interference of intensities that differences between the
predictions of classical and quantum theory appear. In such an experiment two
electric fields are detected on a photomultiplier and their intensities are allowed
to interfere. Whereas classical theory treats the interference of intensities, in
quantum theory the interference is still at the level of probability amplitudes.
This is one of the most important differences between quantum theory and
classical theory.

The first experiment in intensity interferometry was the famous experiment
of R. Hanbury Brown and R.Q. Twiss. This experiment studied the correlation
in the photo-current fluctuations from two detectors. Later experiments were
photon counting experiments, and the correlations between photon numbers
were studied.

The Hanbury-Brown-Twiss experiment observed an enhancement in the
two-time intensity correlation function of short time delays for a thermal light
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source known as photon bunching. This was a consequence of the large intensity
fluctuations in the thermal source. Such photon bunching phenomena may be
adequately explained using a classical theory with a fluctuating electric field
amplitude. For a perfectly amplitude stabilized light field such as an ideal laser
operating well above threshold there is no photon bunching. A photon counting
experiment where the number of photons arriving in an interval T are counted,
shows that there is still a randomness in the photon arrivals. The photon-
number distribution for an ideal laser is Poissonian. For thermal light a super-
Poissonian photocount distribution results.

While the above results may be derived from both classical and quantum
theory, the quantum theory makes additional unique predictions. This was first
elucidated by R.J. Glauber in his quantum formulation of optical coherence
theory in 1963. One such prediction is photon antibunching where the initial
slope of the two-time correlation function is positive. This corresponds to
greater than average separations between the photon arrivals or photon anti-
bunching. The photocount statistics may also be sub-Poissonian. A classical
theory of fluctuating field amplitudes would require negative probabilities in
order to give photon antibunching. In the quantum picture it is easy to visualize
photon arrivals more regular than Poissonian.

It was not, however, until 1975 when H.J. Carmichael and D.F. Walls
predicted that light generated in resonance fluorescence from a two-level atom
would exhibit photon antibunching that a physically accessible system exhibit-
ing nonclassical behaviour was identified. Photon antibunching was observed
during the next year in this system in an experiment by H.J. Kimble,
M. Dagenais and L. Mandel. This was the first nonclassical effect observed in
optics and ushered in a new era in quantum optics.

The experiments of Kimble et al. used an atomic beam and hence the photon
antibunching was convolved with the atomic number fluctuations in the beam.
With developments in ion-trap technology it is now possible to trap a single ion
for several minutes. H. Walther and coworkers in Munich have studied reson-
ance fluorescence from a single atom in a trap. They have observed both photon
antibunching and sub-Poissonian statistics in this system.

In the 1960’s improvements in photon counting techniques proceeded in
tandem with the development of new laser light sources. Light from incoherent
(thermal) and coherent (laser) sources could now be distinguished by their
photon counting properties. The groups of F.T. Arecchi in Milan, L. Mandel in
Rochester and R.E. Pike in Malvern measured the photocount statistics of the
laser. They showed that the photocount statistics went from super-Poissonian
below threshold to Poissonian far above threshold. Concurrently, the quantum
theory of the laser was being developed by H. Haken in Stuttgart, M.O. Scully
and W. Lamb at Yale, and M. Lax and W.H. Louisell in New Jersey. In these
theories both the atomic variables and the electromagnetic field were quantized.
The result of these calculations were that the laser functioned as an essentially
classical device. In fact H. Risken showed that it could be modelled by a van der
Pol oscillator.
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It is only quite recently that the role the noise in the pumping process plays
in obscuring the quantum aspects of the laser has been understood. If the noise
in the pumping process can be suppressed the output of the laser may exhibit
sub-Poissonian statistics. In other words, the intensity fluctuations may
be reduced below the shot-noise level characteristic of normal lasers.
Y. Yamamoto in Tokyo has pioneered experimental developments in the area of
semiconductor lasers with suppressed pump noise. In a high impedance con-
stant current driven semiconductor laser the fluctuations in the pumping elec-
trons are reduced below Poissonian. This results in the photon statistics of the
emitted photons being sub-Poissonian.

It took another nine years after the observation of photon antibunching for
another prediction of the quantum theory of light to be observed — squeezing of
quantum fluctuations. The electric field for a nearly monochromatic plane wave
may be decomposed into two quadrature components with the time dependence
cos wt and sin wt, respectively. In a coherent state, the closest quantum counter-
part to a classical field, the fluctuations in the two quadratures are equal and
minimize the uncertainty product given by Heisenberg’s uncertainty relation.
The quantum fluctuations in a coherent state are equal to the zero-point
vacuum fluctuations and are randomly distributed in phase. In a squeezed state
the quantum fluctuations are no longer independent of phase. One quadrature
phase may have reduced quantum fluctuations at the expense of increased
quantum fluctuations in the other quadrature phase such that the product of the
fluctuations still obeys Heisenberg’s uncertainty relation.

Squeezed states offer the possibility of beating the quantum limit in optical
measurements by making phase-sensitive measurements which utilize only the
quadrature with reduced quantum fluctuations. The generation of squeezed
states requires a nonlinear phase-dependent interaction. The first observation of
squeezed states was achieved by R.E. Slusher in 1985 at the AT&T Bell
Laboratories in four-wave mixing in atomic sodium. This was soon followed by
demonstrations of squeezing in an optical parametric oscillator by H.J. Kimble
and by four-wave mixing in optical fibres by M.D. Levenson.

Squeezing-like photon antibunching is a consequence of the quantization of
the light field. The usefulness of squeezed light was demonstrated in experiments
in optical interferometry by Kimble and Slusher. Following the original sugges-
tion of C.M. Caves at Caltech they injected squeezed light into the empty port of
an interferometer. By choosing the phase of the squeezed light so that the
quantum fluctuations entering the empty port were reduced below the vacuum
level they observed an enhanced visibility of the interference fringes.

In the nonlinear process of parametric down conversion a high frequency
photon splits into two photons with frequencies such that their sum equals that
of the high-energy photon. The two photons (photon twins) produced in this
process possess quantum correlations and have identical intensity fluctuations.
This may be exploited in experiments where the intensity fluctuations in the
difference photocurrent for the two beams is measured. The intensity difference
fluctuations in the twin beams have been shown to be considerably below the
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shot-noise level in experiments by E. Giacobino in Paris and P. Kumar in
Evanston.

The twin beams may also be used in absorption measurements where the
sample is placed in one of the beams and the other beam is used as a reference.
The driving laser is tuned so that the frequency of the twin beams matches the
frequency at which the sample absorbs. When the twin beams are detected and
the photocurrents are subtracted, the presence of even very weak absorption can
be seen because of the small quantum noise in the difference current.

The photon pairs generated in parametric down conversion also carry
quantum correlations of the Einstein-Podolsky—Rosen type. Intensity correla-
tion experiments to test Bell inequalities were designed using a correlated pair of
photons. The initial experiments by A. Aspect in Paris utilized a two photon
cascade to generate the correlated photons, however, recent experiments have
used parametric down conversion. These experiments have consistently given
results in agreement with the predictions of quantum theory and in violation of
classical predictions. At the basis of the difference between the two theories is the
interference of probability amplitudes which is characteristic of quantum mech-
anics. In these intensity interference experiments as opposed to interference
experiments of the Young’s type the two theories yield different predictions. This
was strikingly demonstrated in an intensity interference experiment which has
only one incident photon but has phase-sensitive detection. In this experiment
proposed by S.M. Tan, D.F. Walls and M.J. Collett a single photon may take
either path to two homodyne detectors. Nonlocal quantum correlations be-
tween the two detectors occur, which are a consequence of the interference of the
probability amplitudes for the photon to take either path.

The major advances made in quantum optics, in particular the ability to-
generate and detect light with less quantum fluctuations than the vacuum,
makes optics a fertile testing ground for quantum measurement theory. The idea
of quantum non-demolition measurements arose in the context of how to detect
the change in position of a free mass acted on by a force such as a gravitational
wave. However, the concept is general. Basically one wishes to measure the
value of an observable without disturbing it so that subsequent measurements
can be made with equal accuracy as the first. Demonstrations of quantum
non-demolition measurements have been achieved in optics. In experiments by
M.D. Levenson and P. Grangier two electromagnetic-field modes have been
coupled via a nonlinear interaction. A measurement of the amplitude quadrat-
ure of one mode (the probe) allows one to infer the value of the amplitude
quadrature of the other mode (the signal) without disturbing it. This quantum
non-demolition measurement allows one to evade the back action noise of
the measurement by shunting the noise into the phase quadrature which is
undetected.

The techniques developed in quantum optics include quantum treatments of
dissipation. Dissipation has been shown to play a crucial role in the destruction
of quantum coherence, which has profound implications for quantum measure-
ment theory. The difficulties in generating a macroscopic superposition of
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quantum states (Schrodingers cat) is due to the fragility of such states to the
presence of even small dissipation. Several schemes to generate these superposi-
tion states in optics have been proposed but to date there has been no experi-
mental manifestation.

Matter-wave interferometry is a well established field, for example, electron
and neutron interferometry. More recently, however, such effects have been
demonstrated with atoms. Interferometry with atoms offers the advantage of
greater mass and therefore greater sensitivity for measurements of changes of
gravitational potentials. Using techniques of laser cooling the de Broglie
wavelength of atoms may be increased. With slow atoms the passage time in the
interferometer is increased thus leading to an increase in sensitivity. Atoms also
have internal degrees of freedom which may be used to tag which path an atom
took. Thus demonstrations of the principle of complementary using a double-
slit interference experiment with which path detectors may be realized with
atoms.

Atoms may be diffracted from the periodic potential structure of a standing
light wave. A new field of atomic optics is rapidly emerging. In atomic optics the
role of the light and atoms are reversed. Optical elements such as mirrors and
beam splitters consist of light fields which reflect and split atomic beams. The
transmission of an atom by a standing light wave may be state selective (the
optical Stern—Gerlach effect) and this property may be used as a beam splitter.
The scattering of an atom by a standing light wave may depend on the photon
statistics of the light. Hence, measuring the final momentum distribution of the
atoms may give information on the photon statistics of the light field. Thus
atomic optics may extend the range of quantum measurements possible with
quantum optical techniques. For example, the position an atom passes through
a standing light wave may be determined by measuring the phase shift it imparts
to the light.

The field of quantum optics now occupies a central position involving the
interaction of atoms with the electromagnetic field. It covers a wide range of
topics ranging from fundamental tests of quantum theory to the development
of new laser-light sources. In this text we introduce the analytic techniques of
quantum optics. These techniques are applied to a number of illustrative
examples. While the main emphasis of the book is theoretical, descriptions of
the experiments which have played a central role in the development of
quantum optics are included.

A summary of the topics included in this text book is given as follows:

A familiarity with non-relativistic quantum mechanics is assumed. As we will
be concerned with the quantum properties of light and its interaction with
atoms, the electromagnetic field is quantised in the second chapter. Commonly
used basis states for the field, the number states, the coherent states, and the
squeezed state are introduced and their properties discussed. A definition of
optical coherence is given via a set of field correlation functions in Chap. 3.
Various representations for the electromagnetic field are introduced in Chap. 4
using the number states and the coherent states as a basis.



