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Preface

Risk theory in general and ruin probabilities in particular is traditionally considered
as part of insurance mathematics, and has been an active area of research from the
days of Lundberg all the way up to today. In the classical risk model, the Cramér-
Lundberg theorem investigated the case of light-tailed claims under independence
structure, and obtained the asymptotics for ruin probabilities. However, it would
not be fair not to say that the practical relevance of the area has been questioned
repeatedly. One reason is the blooming of many recent extremal events. Within
the insurance context, extremal events present themselves spectacularly whenever
some catastrophes or terrorist attacks occur, in view of the September 11, 2001
attacks, the 2004 Indian Ocean Tsunami, the 2005 Hurricane Katrina, the 2008
Sichuan earthquake, the 2010 Haiti earthquake, the 2011 Japan earthquake and, in
particular, the recent financial tsunami. Extremal events may clearly correspond to
individual claims which by far exceed the capacity of a single insurance company.
From a mathematical point of view, such extremal events lead to some heavy-tailed
insurance claims, which are the main object in our research. The quantifiability
of such claims makes the mathematical modelling more tractable. Another reason
is the independence restriction among claim sizes and claim inter-arrival times in
the classical risk model. Our research concerns some dependent risk models, which
admit some dependence structures existing among claim sizes and claim inter-arrival
times. We mainly consider two kinds of dependent risk models, one is the model with
interest rate and another is with no interest rate. Some more realistic risk models are
also investigated such as the general risk model, the compound renewal risk model

and the discrete-time risk model with insurance and financial risks, among others.
This book is organized as the following four chapters:

Chapter 1 presents the background of our research including the risk process,

the ruin probabilities, the claim-size distributions and the claim claim arrival pro-
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cess. Some definitions of the heavy-tailed distribution classes commonly used in this
book are introduced in this chapter. We also show the classical Cramér-Lundberg
estimates for the infinite-time ruin probability in the renewal risk model with inde-

pendent light-tailed claims.

Chapter 2 provides some risk models with interest rate. We firstly recall the
famous Veraverbeke’s theorem, which describes the tail asymptotic behavior of the
supremum of a random walk with independent increments. Using this important
result, the infinite-time ruin probability can be estimated in the classical Cramér-
Lundberg risk model with the claims having subexponential integrated tails. We
further establish the generalized Veraverbeke’s theorem in the case that the incre-
ments have O-subexponential integrated distributions; meanwhile, a uniform upper
bound is derived for the distribution of the supremum of a random walk with in-
dependent but non-identically distributed increments, whose tail distributions are
dominated by a common tail distribution with an O-subexponential integrated dis-
tribution. In Section 2, we investigate two kinds of dependent risk models and obtain
some asymptotic formulas for the infinite-time ruin probabilities. One risk model
considers the claim sizes as a modulated process, and the other deals with negatively
upper quadrant dependent claim sizes. In the two models, the inter-arrival times
are both assumed to be negatively lower quadrant dependent. In Section 3 we focus
on the finite-time ruin probability, which is more practical but much harder to in-
vestigate than the infinite-time ruin probability. Our obtained result is based on a
dependent renewal risk model, where the claim sizes are independent and identically
distributed with strongly subexponential tails, and the claim inter-arrival times are
also negatively lower quadrant dependent. We further extend this result to a uni-
form one for the time horizon varying in the positive half line. In the last section of
this chapter, we derive a theoretical result on the supremum of a dependent random

walk with subexponential increments.

Chapter 3 focuses on some risk models with no interest rate. We firstly inves-
tigate a dependent delayed renewal risk model, where the claim sizes are pairwise
negative quadrant dependent r.v.s with dominatedly-varying-tailed distributions and

the claim inter-arrival times are negatively lower quadrant dependent, and derive the
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asymptotics for the infinite-time ruin probability. We further consider a dependent
general risk model, where the claim sizes are strengthened to be negatively asso-
ciated but the claim arrival process can be a general counting process. Based on
the obtained results, we establish a uniform formula for the finite-time and infinite-
time ruin probabilities in the described dependent delayed renewal risk model. In
Section 2 we make some refinements of the results obtained in Section 1. Some
weaker and more verifiable dependence structures among the claim sizes and the
inter-arrival times are discussed. We remark that these newly proposed dependence
structures allow many common negatively dependent random variables as well as
some positively dependent ones. Section 3 considers the ordinary and compound
renewal risk models. The latter is a natural modification of the classical one, where
the claims at each accident moment are aggregated from a number of individual
claims, meanwhile, in an ordinary renewal risk model one claim at each accident
time appears. And the individual claim sizes are assumed to belong to the class
of subexponential distributions rather than the heavily heavy-tailed class. We also
perform some simulations to verify the approximate relationships in our obtained

theoritical results.

In Chapter 4, we are interested in a discrete-time risk model model with insurance
and financial risks. By establishing some results on tail behavior for the finite and
infinite randomly weighted sums, we derive some asymptotic estimates for the finite-
time and infinite-time ruin probabilities, respectively. In this chapter, we consider
two kinds of randomly weighted sums: one is the finite randomly weighted sums
where there exists some dependence structure between the primary random variables
(which can be regarded as the net insurance losses) and the stochastic weights (which
can be interpreted as the stochastic factors); and another is the infinite randomly
weighted sums where some dependence exists among the primary random variables

and the stochastic weights can be arbitrarily dependent.

In summary, we have thoroughly and systematically studied some dependent
heavy-tailed risk models, and mainly investigated some estimates for finite-time and

infinite-time ruin probabilities.

During the preparation of the book, I benefitted a lot from critical remarks
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Chapter 1

Introduction

Within the insurance industry, it is not possible nor desirable to eliminate all
risks. For a given situation, risk management consists in analyzing exposure to
risk. Whereas much of traditional statistics studies the average and the expected,
risk management has more to do with the unexpected, the rare events and extreme

cases. This calls for the use of appropriate stochastic models and heavy-tail analysis.

In this book, we mainly utilize the asymptotic behavior of ruin probabilities to
describe and evaluate the risk of an insurance company. To this end, we investigate
many kinds of nonstandard risk models, which have two points in common: (1) some
dependence structures are allowed among the claim sizes or the claim inter-arrival

times; (2) the claim sizes are assumed to be heavy-tailed.

In classical risk management, typically, the mathematical constituents of the
model are assumed to be independent. This is often due to the implied benefits in
terms of mathematical tractability more than to the nature of the observations. In
modern risk management, a central issues is the modeling of dependent risks. In
fact, through many practical examples, in the last years the consciousness that the
assumption of independence between the components of a risk model is not always
satisfied became widely accepted. Losses resulting for car polices in the case of hail or
for households due to an earthquake or a flood are definitely dependent. As already

mentioned, it is natural and reasonable to consider some dependent risk models.

Why do we fucus on some heavy-tailed risk models? This is because the ruin of
an insurance company is always caused by some critically huge claims, such as those
in some natural or man-made disasters, rather than a lot of small-size claims. As

stated in Sigma (1996), at 150 billion US dallars, the total estimated losses in 1995
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amounted to ten times the cost of insured losses, an exceptionally high amount, more
than half of which was accounted for by the Kobe earthquake. Natural catastrophes
alone caused insured losses of 12.4 billion US dallars, more than half of which were
accounted for by four single disasters costing some billionAdollars each; the Kobe
earthquake, hurricane “Opal” a hailstorm in Texas and winter storms combined
with floods in Northern Europe. Natural catastrophes also claimed 20000 of the
28000 fatalities in the year of the report.

We call such events as extremal events. Whatever definition one takess most
will agree that Table 1.1 taken from Sigma (1996) contains extremal events. When
looked upon as single events, each of them exhibits some common features. They
are difficult to predict a long time ahead. It should be noted that 28 of the insurance
losses reported in Table 1.1 are due to natural events and only 2 are caused by man-
made disasters. If looked at within the larger context of all insurance claims, they

are rare events.

Extremal events in insurance and finance have (from a mathematical point of
view) the advantage that they are mostly quantifiable in units of money. Extremal
events are relevant especially nowadays, in view of the September 11, 2001 attacks,
the 2004 Indian Ocean Tsunami, the 2005 Hurricane Katrina, the 2008 Sichuan
earthquake, the 2010 Haiti earthquake, the 2011 Japan earthquake, and, in particu-
lar, the recent financial tsunami. However most such events have a non-quantifiable
component which more and more economists are trying to take into account. Going
back to the data presented in Table 1.1 extremal events may clearly correspond to
individual (or indeed grouped) claims which by far exceed the capacity of a single
insurance company; the insurance world’s reaction to this problem is the creation of
a reinsurance market. One does not however have to go to this grand scale. Even
looking at standard claim data within a given company one is typically confronted
with statements like “In this portfolio, 20% of the claims are responsible for more

than 80% of the total portfolio claim amount”.

By stating above that the quantifiability of insurance claims in monetary units
makes the mathematical modelling more tractable, we notice that, without excep-

tion, all such extremal evens produced one or a series of huge claims, which may



exceed the solvency of an insurance company and decide whether it does ruin or not.

Table 1.1 The 30 most costly insurance losses 1970-1995. Losses are in

million $US at 1992 prices. For a precise definition of the notion of

catastrophic claim in this context see Sigma (1996)

Losses Date Evens Country

16000 08/24/92 Hurricane “Andrew” USA

11838 01/17/94 Northridge earthquake in California USA
5724 09/27/91 Tornado “Mireille” Japan
4931 01/25/90 Winterstorm “Daria” Europe
4749 09/15/89 Hurricane “Hugo” P. Rico
4528 10/17/89 Loma Prieta earthquake USA
3427 02/26/90 Winter storm “Vivian” Europe
2373 07/06/88 Explosion on “Piper Alpha” offshore oil rig UK
2282 01/17/95 Hanshin earthquake in Kobe Japan
1938 10/04/95 Hurricane “Opal” USA
1700 03/10/93 Blizzard over eastern coast USA
1600 09/11/92 Hurricane “Iniki” USA
1500 10/23/89 Explosion at Philips Petroleum USA
1453 09/03/79 Tornado “Frederic” USA
1422 09/18/74 Tornado “Fifi” Honduras
1320 09/12/88 Hurricane “Gilbert” Jamaica
1238 12/17/83 Snowstorms, frost USA
1236 10/20/91 Forest fire which spread to urban area USA
1224 04/02/74 Tornados in 14 states USA
1172 08/04/70 Tornado “Celia” USA
1168 04/25/73 Flooding caused by Mississippi in Midwest USA
1048 05/05/95 Wind, hail and floods USA
1005 01/02/76 Storms over northwestern Europe Europe
950 08/17/83 Hurricane “Alicia” USA
923 01/21/95 Storms and flooding in northern Europe Europe
923 10/26/93 Forest fire which spread to urban area USA
894 02/03/90 Tornado “Herta” Europe
870 09/03/93 Typhoon “Yancy” Japan
865 08/18/91 Hurricane “Bob” USA
851 02/16/80 Floods in California and Arizona USA

When we are interested in the extremal behavior of the models described above

we have to ask how extremal events occur. This means we have to find appropriate

mathematical methods in order to explain events that occur with relatively small

probability but have a significant influence on the behavior of the whole model. A
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natural class of large claim distributions is given by the subexponential distributions.

Their defining property is:

fim P(X: +---+ X, > 3) 4
z—oo P(max(Xy, -+, Xn) >z)

for every n > 2, where X;,---, X, are independent and identically distributed
(ii.d.) nonnegative random variables (r.v.s). Thus the tails of the distribution of
the sum and of the maximum of the first n claims are asymptotically of the same
order. This clearly indicates the strong influence of the largest claim on the total
claim amount. In insurance, heavy-tailed (subexponential) distributions are well
recognized as standard models for individual claim sizes (see, e.g. Embrechts et al.
(1997)). Therefore, in this book we treat some heavy-tailed risk models as our main
objective.

In the rest of this chapter, we introduce the classical risk model as well as some
notions and notation in risk theory, which will commonly used in this book. After a
brief summary of the basic risk model in Section 1.1, we describe the distributions
of the claim sizes and the claim-arrival process in Sections 1.2. In Section 1.3 we
derive the classical Cramér-Lundberg estimate for ruin probabilities in the infinite

horizon case based on a small claim condition.

1.1 Risk process and ruin probabilities

The basic insurance risk model goes back to the early work by Filip Lundberg (1903)
who in his famous Uppsala thesis of 1903 laid the foundation of actuarial risk theory.
Lundberg realized that Poisson processes lie at the heart of non-life insurance models.
Via a suitable time transformation (so-called operational time) he was able to restrict
his analysis to the homogeneous Poisson process. It was then left to Harald Cramér
and his Stockholm School to incorporate Lundberg’s ideas into the emerging theory
of stochastic processes. In doing so, Cramér contributed considerably to laying the
foundation of both non-life insurance mathematics as well as probability theory.
The basic model, referred to in the sequel as the Cramér-Lundberg model, has the

following structure:
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Definition 1.1.1 (The Cramér-Lundberg risk model, the renewal risk model)
The Cramér-Lundberg risk model satisfies the following assumptions (a)—(e):

(a) The claim size process: the claim sizes {Xp, n > 1} form a sequence of i.i.d.
positive r.v.s with common non-lattice distribution F, finite mean pp = EX; and
finite variance 0% = DX; < oo.

(b) The claim times: the claims occur at the random instants of time
0<or1<o9<--- a.s.
(¢) The claim arrival process: the claim arrival process
N(t) =sup{n>1: o, <t}

represents the number of claims within period [0,t], t > 0, by convention, sup @ = 0.

(d) The claim inter-arrival times
0p=01, Op=o0r—0k_1, k=2, (1.1)

are i.4.d. exponentially distributed with finite mean Ef; = 1/A > 0.

(e) The claim sizes { Xy, n > 1} and the claim inter-arrival times {60,, n > 1}
are mutually independent.

The renewal model is given by (a)—(c), (e) and

(d’) The claim inter-arrival times {0, n > 1} given in (1.1) are i.i.d. with finite
mean Ef; = 1/A > 0.

Clearly, in the classical Cramér-Lundberg risk model, the claim arrival pro-
cess N(t) is a homogeneous Poisson process with intensity A > 0. The renewal
model,which was proposed by Sparre-Andersen 1957, is a slight generalization of the
Cramér-Lundberg model, and is also called as the Sparre-Andersen risk model. We
remark that the renewal model allows for the renewal counting process N (t), which
is more general than the Poisson process for the claim arrivals.

The total claim amount process S(t) of the underlying portfolio is defined as
N(t)

S(t) = Z Xk, t 2 0. An important quantity in the Cramér-Lundberg risk model
k=1

is the total claim amount distribution (or aggregate claim-size distribution)

P(S(t)<z)= Ze_’\t%F"*(m), z20, t>0,

n=0
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n
where F™*(z) = P <Z Xk < ZL‘) is the n-fold convolution of F. Define the risk
k=1

process of an insurance company as
R(z,t) =z + ct — S(t), (1.2)

where z > 0 denotes the initial capital and ¢ > 0 stands for the premium income
rate. The choice of ¢ requires a net profit condition, see (1.3) below.

In the classical Cramér-Lundberg set-up, the following quantities are relevant for
various insurance-related problems.

Definition 1.1.2 (Ruin) The ruin probability in finite time (or with finite
horizon) :

inf R(z,t) <0
t<T

XX

¥(z, T) =P<

R(z,0) = x) .

The ruin probability in infinite time (or with infinite horizon) :

¥(@) = p(z,00) = P (tiggR(z,t) < o’ R(z,0) = m) .

From the viewpoint of an insurance company, an obvious condition towards sol-
vency is ¢ — Aur > 0, implying that the risk process R(z,t) has a positive drift for

large t. This leads to the basic net profit condition in the renewal model:

p=/\i—1>o. (1.3)
HF

The constant p is called the safety loading, which can be interpreted as a risk pre-
mium rate, and is the relative amount by which the premium income rate ¢ exceeds
the average amount A\up of claim per unit time; indeed, the premium income over
the period [0,t] equals ¢t = (1 4 p)Aupt. It is sometimes stated in the theoretical
literature that the typical values of the safety loading p are relatively small, say
10%-20%.

By definition of the risk process, ruin can occur only at the claim times o, hence

forx >0

n

Y(z) =P (Supz (X — cby) > x) . (1.4)

n21 k=1
From (1.4) it follows that, in the renewal model, the determination of the infinite-

time ruin probability ¥ (z) is reduced to the study of the tail distribution of the



