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Preface

Background

Mathematical models for spatial-temporal physical, chemical, and biological systems
under random influences are often in the form of stochastic partial differential equa-
tions (SPDEs). Stochastic partial differential equations contain randomness such
as fluctuating forces, uncertain parameters, random sources, and random boundary
conditions. The importance of incorporating stochastic effects in the modeling of
complex systems has been recognized. For example, there has been increasing interest
in mathematical modeling of complex phenomena in the climate system, biophysics,
condensed matter physics, materials sciences, information systems, mechanical and
electrical engineering, and finance via SPDEs. The inclusion of stochastic effects
in mathematical models has led to interesting new mathematical problems at the
interface of dynamical systems, partial differential equations, and probability theory.
Problems arising in the context of stochastic dynamical modeling have inspired
challenging research topics about the interactions among uncertainty, nonlinearity,
and multiple scales. They also motivate efficient numerical methods for simulating
random phenomena.

Deterministic partial differential equations originated 200 years ago as mathemat-
ical models for various phenomena in engineering and science. Now stochastic partial
differential equations have started to appear more frequently to describe complex
phenomena under uncertainty. Systematic research on stochastic partial differential
equations started in earnest in the 1990s, resulting in several books about well-
posedness, stability and deviation, and invariant measure and ergodicity, including
books by Rozovskii (1990), Da Prato and Zabczyk (1992, 1996), Prevot and Rockner
(2007), and Chow (2007).

Topics and Motivation

However, complex systems not only are subject to uncertainty, but they also very
often operate on multiple temporal or spatial scales. In this book, we focus on sto-
chastic partial differential equations with slow and fast time scales or large and small
spatial scales. We develop basic techniques, such as averaging, slow manifolds, and
homogenization, to extract effective dynamics from these stochastic partial differen-
tial equations.

The motivation for extracting effective dynamics is twofold. On one hand, effec-
tive dynamics is often just what we desire. For example, the air temperature is a
macroscopic consequence of the motion of a large number of air molecules. In order
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to decide what to wear in the morning, we do not need to know the velocity of these
molecules, only their effective or collective effect, i.e., the temperature measured by
a thermometer. On the other hand, multiscale dynamical systems are sometimes too
complicated to analyze or too expensive to simulate all involved scales. To make
progress in understanding these dynamical systems, it is desirable to concentrate on
macroscopic scales and examine their effective evolution.

Audience

This book is intended as a reference for applied mathematicians and scientists (gradu-
ate students and professionals) who would like to understand effective dynamical
behaviors of stochastic partial differential equations with multiple scales. It may also
be used as a supplement in a course on stochastic partial differential equations. Each
chapter has several exercises, with hints or solutions at the end of the book. Realizing
that the readers of this book may have various backgrounds, we try to maintain a bal-
ance between mathematical precision and accessibility.

Prerequisites

The prerequisites for reading this book include basic knowledge of stochastic partial
differential equations, such as the contents of the first three chapters of P. L. Chow’s
Stochastic Partial Differential Equations (2007) or the first three chapters of G. Da
Prato and J. Zabczyk’s Stochastic Equations in Infinite Dimensions (1992). To help
readers quickly get up to this stage, these prerequisites are also reviewed in Chapters
3 and 4 of the present book.

Acknowledgments

An earlier version of this book was circulated as lecture notes in the first author’s
course Stochastic Partial Differential Equations at Illinois Institute of Technology over
the last several years. We would like to thank the graduate students in the course for their
feedback. The materials in Chapters 5, 6, and 7 are partly based on our recent research.

The first author is grateful to Ludwig Arnold for his many years of guidance and
encouragement in the study of stochastic dynamical systems and stochastic partial
differential equations. We have benefited from many years of productive research
interactions with our collaborators and friends, especially Peter Bates, Dirk Blomker,
Daomin Cao, Tomds Caraballo, Pao-Liu Chow, Igor Chueshov, Franco Flandoli,
Hongjun Gao, Peter Imkeller, Peter E. Kloeden, Sergey V. Lototsky, Kening Lu,
Anthony J. Roberts, Michael Rockner, Boris Rozovskii, Michael Scheutzow, Bjoérn
Schmalfuf}, and Jerzy Zabczyk. The second author would especially like to thank
Anthony J. Roberts, who provided him the opportunity to conduct research at the
University of Adelaide, Australia. We would also like to thank our colleagues,
visitors, and students at Illinois Institute of Technology (Chicago, Illinois, USA),
Huazhong University of Science and Technology (Wuhan, China), and Nanjing
University (Nanjing, China), particularly Guanggan Chen, Hongbo Fu, Xingye Kan,
Yuhong Li, Yan Lv, and Wei W, for their constructive comments.



Preface vii

Mark R. Lytell proofread this book in its entirety. Hassan Allouba, Hakima
Bessaih, Igor Cialenco, Peter E. Kloeden, and Bjorn SchmalfuBl proofread parts of the
book. Their comments and suggestions have greatly improved the presentation of this
book. Finally, we would like to acknowledge the National Science Foundation for its
generous support of our research.

Jingiao Duan
Chicago, Illinois, USA

Wei Wang
Nanjing, China
October 2013



Contents

Preface

1 Introduction

1.1
1.2
1.3

Motivation
Examples of Stochastic Partial Differential Equations
Outlines for This Book

2  Deterministic Partial Differential Equations

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Fourier Series in Hilbert Space

Solving Linear Partial Differential Equations
Integral Equalities

Differential and Integral Inequalities

Sobolev Inequalities

Some Nonlinear Partial Differential Equations
Problems

3  Stochastic Calculus in Hilbert Space

3.1
32
33
34
3.5
3.6
3
3.8

Brownian Motion and White Noise in Euclidean Space
Deterministic Calculus in Hilbert Space

Random Variables in Hilbert Space

Gaussian Random Variables in Hilbert Space
Brownian Motion and White Noise in Hilbert Space
Stochastic Calculus in Hilbert Space

Itd’s Formula in Hilbert Space

Problems

4  Stochastic Partial Differential Equations

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Basic Setup

Strong and Weak Solutions

Mild Solutions

Martingale Solutions

Conversion Between It6 and Stratonovich SPDEs
Linear Stochastic Partial Differential Equations
Effects of Noise on Solution Paths

Large Deviations for SPDEs

Infinite Dimensional Stochastic Dynamics

4.10 Random Dynamical Systems Defined by SPDEs
4.11 Problems



Contents

5  Stochastic Averaging Principles

5.1
5.2
5:3
5.4
55
5.6
5.7
5.8
5.9
5.10
5.11

Classical Results on Averaging

An Averaging Principle for Slow-Fast SPDEs

Proof of the Averaging Principle Theorem 5.20

A Normal Deviation Principle for Slow-Fast SPDEs
Proof of the Normal Deviation Principle Theorem 5.34
Macroscopic Reduction for Stochastic Systems

Large Deviation Principles for the Averaging Approximation
PDEs with Random Coefficients

Further Remarks

Looking Forward

Problems

6  Slow Manifold Reduction

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Background

Random Center-Unstable Manifolds for Stochastic Systems
Random Center-Unstable Manifold Reduction

Local Random Invariant Manifold for SPDEs

Random Slow Manifold Reduction for Slow-Fast SPDEs

A Different Reduction Method for SPDEs: Amplitude Equation
Looking Forward

Problems

7  Stochastic Homogenization

7.1
7.2

73

74
1.5

Deterministic Homogenization

Homogenized Macroscopic Dynamics for Stochastic
Linear Microscopic Systems

Homogenized Macroscopic Dynamics for Stochastic
Nonlinear Microscopic Systems

Looking Forward

Problems

Hints and Solutions

Notations

References

93

93
107
112
118
121
128
132
135
139
141
141

145
145
150
159
165
170
181
183
184

187
188

197

224
229
229

233
255
257



1 Introduction

Examples of stochastic partial differential equations; outlines of this book

1.1 Motivation

Deterministic partial differential equations arise as mathematical models for systems in
engineering and science. Bernoulli, D’ Alembert, and Euler derived and solved a linear
wave equation for the motion of vibrating strings in the 18th century. In the early 19th
century, Fourier derived a linear heat conduction equation and solved it via a series of
trigonometric functions [192, Ch. 28].

Stochastic partial differential equations (SPDEs) appeared much later. The subject
has started to gain momentum since the 1970s, with early representative works such as
Cabana [58], Bensoussan and Temam [33], Pardoux [248], Faris [123], Walsh [295],
and Doering [99,100], among others.

Scientific and engineering systems are often subject to uncertainty or random fluctu-
ations. Randomness may have delicate or even profound impact on the overall evolution
of these systems. For example, external noise could induce phase transitions [160, Ch.
6], bifurcation [61], resonance [172, Ch. 1], or pattern formation [142, Ch. 5], [236].
The interactions between uncertainty and nonlinearity also lead to interesting dynam-
ical systems issues. Taking stochastic effects into account is of central importance for
the development of mathematical models of complex phenomena under uncertainty in
engineering and science. SPDEs emerge as mathematical models for randomly influ-
enced systems that contain randomness, such as stochastic forcing, uncertain param-
eters, random sources, and random boundary conditions. For general background on
SPDEs, see [30,63,76,94,127,152,159,218,260,271,306]. There has been some promis-
ing new developments in understanding dynamical behaviors of SPDEs—for example,
viainvariant measures and ergodicity [107,117,132,153,204], amplitude equations [43],
numerical analysis [174], and parameter estimation [83,163,167], among others.

In addition to uncertainty, complex systems often evolve on multiple time and/or
spatial scales [116]. The corresponding SPDE models thus involve multiple scales. In
this book, we focus on stochastic partial differential equations with slow and fast time
scales as well as large and small spatial scales. We develop basic techniques, including
averaging, slow manifold reduction, and homogenization, to extract effective dynamics
as described by reduced or simplified stochastic partial differential equations.

Effective dynamics are often what we desire. Multiscale dynamical systems are
often too complicated to analyze or too expensive to simulate. To make progress in

Effective Dy ics of Stochastic Partial Diffe; ial Equati http://dx.doi.org/10.1016/B978-0-12-800882-9.00001-9
© 2014 Elsevier Inc. All rights reserved.




2 Effective Dynamics of Stochastic Partial Differential Equations

understanding these dynamical systems, it is desirable to concentrate on significant
scales, i.e., the macroscopic scales, and examine the effective evolution of these scales.

1.2 Examples of Stochastic Partial Differential Equations

In this section, we present a few examples of stochastic partial differential equations
(SPDEs or stochastic PDEs) arising from applications.

Example 1.1 (Heat conduction in a rod with fluctuating thermal source). The
conduction of heat in a rod, subject to a random thermal source, may be described by
a stochastic heat equation [123]

U = Kuxy +n(x, 1), (1.1)

where u(x, t) is the temperature at position x and time ¢, k is the (positive) thermal
diffusivity, and n(x, t) is a noise process.

Example 1.2 (A traffic model). A one-dimensional traffic flow may be described
by a macroscopic quantity, i.e., the density. Let R(x, t) be the deviation of the density
from an equilibrium state at position x and time ¢. Then it approximately satisfies a
diffusion equation with fluctuations [308]

Rt = K Ryx —c Ry +n(x, 1), (1.2)

where K, c are positive constants depending on the equilibrium state, and n(x, ) is a
noise process caused by environmental fluctuations.

Example 1.3 (Concentration of particles in a fluid). The concentration of particles
in a fluid, C(x, ), at position x and time ¢ approximately satisfies a diffusion equation
with fluctuations [322, Sec. 1.4]

C; =D AC + n(x, 1), (1.3)

where D is the (positive) diffusivity, A is the three-dimensional T.aplace operator, and
n(x, t) is an environmental noise process.

Example 1.4 (Vibration of a string under random forcing). A vibrating string
being struck randomly by sand particles in a dust storm [6,58] may be modeled by a
stochastic wave equation

U = igx +1(x, 1), (1.4)

where u(x, t) is the string displacement at position x and time ¢, the positive constant
c is the propagation speed of the wave, and 7(x, ) is a noise process.

Example 1.5 (A coupled system in molecular biology). Chiral symmetry breaking is
an example of spontaneous symmetry breaking affecting the chiral symmetry in nature.
For example, the nucleotide links of RNA (ribonucleic acid) and DNA (deoxyribonucleic
acid) incorporate exclusively dextro-rotary (D) ribose and D-deoxyribose, whereas the
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enzymes involve only laevo-rotary (L) enantiomers of amino acids. Two continuous
fields a(x, t) and b(x, 1), related to the annihilation for L and D, respectively, are
described by a system of coupled stochastic partial differential equations [158]

da = Di1Aa + kia — kpab — kza® + n1(x, 1), (1.5)
8 b = DyAb + kib — kaab — k3b® + na(x, 1), (1.6)

where x varies in a three-dimensional spatial domain; D1, D, (both positive) and k1, k,
are real parameters; and n; and 7y are noise processes. When D; « D», this is a
slow-fast system of SPDEs.

Example 1.6 (A continuum limit of dynamical evolution of a group of “particles”).
SPDEs may arise as continuum limits of a system of stochastic ordinary differential
equations (SODEs or SDEs) describing the motion of “particles” under certain constraints
on system parameters [7,195,196,207,214].

In particular, a stochastic Fisher—Kolmogorov—Petrovsky—Piscunov equation
emerges in this context [102]

0t = Duyy + yu(l —u) + e/u(l —u)n(x, 1), (1.7)

where u(x, t) is the population density for a certain species; D, y, and ¢ are parameters;
and 7 is a noise process.

Example 1.7 (Vibration of a string and conduction of heat under random boundary
conditions). Vibration of a flexible string of length /, randomly excited by a boundary
force, may be modeled as [57,223]

Uy = czuxx, O0<x<l, (1.8)
u(Ov t) = 05 ux(l, t) = n(t)! (1'9)

where u(x, t) is the string displacement at position x and time ¢, the positive constant
c is the propagation speed of the wave, and n(¢) is a noise process.

Evolution of the temperature distribution in a rod of length /, with fluctuating heat
source at one end and random thermal flux at the other end, may be described by the
following SPDE [96]:

U = KUygx, O0<x<l, (1.10)
u@,0) =m@), uxl,t)=mnm@), (1.11)

where u(x, t) is the temperature at position x and time 7, « is the (positive) thermal
diffusivity, and 77; and 7, are noise processes.

Random boundary conditions also arise in geophysical fluid modeling [50,51,226].

In some situations, a random boundary condition may also involve the time deriva-
tive of the unknown quantity, called a dynamical random boundary condition
[55,79,297,300]. For example, dynamic boundary conditions appear in the heat transfer
model of a solid in contact with a fluid [210], in chemical reactor theory [211], and
in colloid and interface chemistry [293]. Noise enters these boundary conditions as
thermal agitation or molecular fluctuations on a physical boundary or on an interface.
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Noise will be defined as the generalized time derivative of a Wiener process (or
Brownian motion) W(¢) in Chapter 3.

Note that partial differential equations with random coefficients are called random
partial differential equations (or random PDEs). They are different from stochastic
partial differential equations, which contain noises in terms of Brownian motions.
This distinction will become clear in the next chapter. Random partial differential
equations have also appeared in mathematical modeling of various phenomena; see
[14,279,169,175,208,216,212,228,250].

1.3 Outlines for This Book

We now briefly overview the contents of this book. Chapters 5, 6 and 7 are partly based
on our recent research.

1.3.1 Chapter 2: Deterministic Partial Differential Equations

We briefly present a few examples of deterministic PDEs arising as mathematical models
for time-dependent phenomena in engineering and science, together with their solutions
by Fourier series or Fourier transforms. Then we recall some equalities and inequalities
useful for estimating solutions of both deterministic and stochastic partial differential
equations.

1.3.2 Chapter 3: Stochastic Calculus in Hilbert Space

We first recall basic probability concepts and Brownian motion in Euclidean space
R”" and in Hilbert space, and then we review Fréchet derivatives and Gateaux deriva-
tives as needed for Itd’s formula. Finally, we discuss stochastic calculus in Hilbert
space, including a version of It6’s formula that is useful for analyzing stochastic partial
differential equations.

1.3.3 Chapter 4: Stochastic Partial Differential Equations

We review some basic facts about stochastic partial differential equations, including
various solution concepts such as weak, strong, mild, and martingale solutions and
sufficient conditions under which these solutions exist. Moreover, we briefly discuss
infinite dimensional stochastic dynamical systems through a few examples.

1.3.4 Chapter 5: Stochastic Averaging Principles

We consider averaging principles for a system of stochastic partial differential equations
with slow and fast time scales:

du€ = [Au® + @€, v)]dt +o1dW (1), (1.12)
1 02

dvf = —| Av€ € V) |dt + —=dWh(p), 1.13

v e[ Ve + g€, v9)] +JE 2 (1) (1.13)
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where € is a small positive parameter and W} and W, are mutually independent Wiener
processes defined on a probability space (§2, F, P). The effective dynamics for this
system are shown to be described by an averaged or effective system

du = [Au+ f(u)]dt + 01dW1(2), (1.14)

where the averaged quantify f («) is appropriately defined. The errors for the approx-
imation of the original multiscale SPDE system by the effective system are quantified
via normal deviation principles as well as large deviation principles.

Finally, averaging principles for partial differential equations with time-dependent,
time-recurrent random coefficients (e.g., periodic, quasiperiodic, or ergodic) are also
discussed.

1.3.5 Chapter 6: Slow Manifold Reduction

We first present a random center manifold reduction method for a class of stochastic
evolutionary equations in a Hilbert space H:

du(t) = [Au(t) + F(u())ldt + u®) odW (), u() =uoc H. (1.15)

Here o indicates the Stratonovich differential. A random center manifold is constructed
as the graph of a random Lipschitz mapping 4° : H. — H;. Here H = H. @ H;. Then
the effective dynamics are described by a reduced system on the random center manifold

duc(t) = [Acuc(t) + Foluc(t) + 1 (uc(t), Bw))ldt + uc(t) o dW(t),  (1.16)

where A. and F, are projections of A and F to H,, respectively.
Then we consider random slow manifold reduction for a system of SPDEs with slow
and fast time scales:

du€ = [Au€ + F@u,v9)], u€(0)=ug € H, (1.17)
1 1

dv® = —[Bv® + g(u€, v°))dt + —=dW(t), v°(0) =vy € Hp, (1.18)
€ J€

with a small positive parameter € and a Wiener process W (¢). The effective dynamics
for this system are captured by a reduced system on the random slow manifold

dité (1) = [Aac(t) + f@E(t), h @ (1), 6;0) + n° (G, w))ldt, (1.19)

where h€(-, w) : H — Hj is a Lipschitz mapping whose graph is the random slow
manifold.

1.3.6 Chapter 7: Stochastic Homogenization

In this final chapter, we consider a microscopic heterogeneous system under random
influences. The randomness enters the system at the physical boundary of small-scale
obstacles (heterogeneities) as well as at the interior of the physical medium. This
system is modeled by a stochastic partial differential equation defined on a domain D,
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perforated with small holes (obstacles or heterogeneities) of “size” €, together with
random dynamical boundary conditions on the boundaries of these small holes

duc(x,1) = [Auelx, ) + £, 1, ue, Vo) [dt + g1, DdWi (x, ),

in De x (0, T), (1.20)
Educ(x, 1) = [— W — ebuc(x, t)]dt +ega(x, NdWa(x, 1),
€
on 3Se x (0, T), (1.21)

with a small positive parameter €, constant b, nonlinearity f, and noise intensities g
and g;. Moreover, Wj(x, t) and W>(x, ¢) are mutually independent Wiener processes,
and v is the outward unit normal vector on the boundary of small holes.

We derive a homogenized, macroscopic model for this heterogeneous stochastic
system

dU = [07div, (AV,U) — bAU + 9 f]dt
+0g1dWi(t) + AgadWa(2), (1.22)
where ¢ and A are characterized by the microscopic heterogeneities. Moreover, A and
f are appropriately homogenized linear and nonlinear operators, respectively. This

homogenized or effective model is a new stochastic partial differential equation defined
on a unified domain D without small holes and with the usual boundary conditions only.



2 Deterministic Partial Differential
Equations

Examples of partial differential equations; Fourier methods and basic analytic tools for partial
differential equations

In this chapter, we first briefly present a few examples of deterministic partial diffetential
equations (PDEs) arising as mathematical models for time-dependent phenomena in
engineering and science, together with their solutions by Fourier series or Fourier
transforms. Then we recall some equalities that are useful for estimating solutions of
both deterministic and stochastic partial differential equations.

For elementary topics on solution methods for linear partial differential equations,
see [147,239,258]. More advanced topics, such as well-posedness and solutioh esti-
mates, for deterministic partial differential equations may be found in popular textbooks
such as [121,176,231,264].

The basic setup and well-posedness for stochastic PDEs are discussed in Chabter 4.

2.1 Fourier Series in Hilbert Space

We recall some information about Fourier series in Hilbert space, which is related to
Hilbert—Schmidt theory.

A vector space has two operations, addition and scalar multiplication, which have
the usual properties we are familiar with in Euclidean space R”. A Hilbert space H is a
vector space with a scalar product (-, -), with the usual properties we are familidr with
in R"; see [198, p. 128] or [313, p. 40] for details. In fact, R" is a vector space ard also
a Hilbert space.

A separable Hilbert space H has a countable orthonormal basis {€,}°>°_ |, (em, ex) =
8mn, Where 8,,, is the Kronecker delta function (i.e., it takes value 1 when m = n, and
0 otherwise). Moreover, for any » € H, we have Fourier series expansion

h= Z(h,en)en. 2.1
n=1

In the context of solving PDEs, we choose to work in a Hilbert space with a countable
orthonormal basis. Such a Hilbert space is a separable Hilbert space. This is naturally
possible with the help of the Hilbert—Schmidt theorem [316, p. 232].

Effective Dynamics of Stochastic Partial Differential Equations. http://dx.doi.org/10.1016/B978-0-12-800882-9.00002-0
© 2014 Elsevier Inc. All rights reserved.
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The Hilbert—Schmidt theorem [316, p. 232] says that a linear compact symmetric
operator A on a separable Hilbert space H has a set of eigenvectors that form a complete
orthonormal basis for H. Furthermore, all the eigenvalues of A are real, each nonzero
eigenvalue has finite multiplicity, and two eigenvectors that correspond to different
eigenvalues are orthogonal.

This theorem applies to a strong self-adjoint elliptic differential operator B,

Bu= Y (~D)MD%(ap(x)DPu), xeDCR",

0<|al,|Bl<m

where the domain of definition of B is an appropriate dense subspace of H = L%(D),
depending on the boundary condition specified for u.

When B is invertible, let A = B~!. If B is not invertible, set A = (B + al)~! for
some a such that (B+al)~! exists. This may be necessary in order for the operator to be
invertible, i.e., no zero eigenvalue, such as in the case of the Laplace operator with zero
Neumann boundary conditions. Note that A is a linear symmetric compact operator in
a Hilbert space, e.g., H = L?(D), the space of square-integrable functions on D.

By the Hilbert—Schmidt theorem, eigenvectors (also called eigenfunctions or eigen-
modes in this context) of A form an orthonormal basis for H = L2(D). Note that A and
B share the same set of eigenfunctions. So, we can claim that the strong self-adjoint
elliptic operator B’s eigenfunctions form an orthonormal basis for H = L2(D).

In the case of one spatial variable, the elliptic differential operator is the so-called
Sturm-Liouville operator [316, p. 245],

Bu=—(pu') +qu, x¢€(0,0),

where p(x), p’(x) and g (x) are continuous on (0, ). This operator arises in solving lin-
ear (deterministic) partial differential equations by the method of separating variables.
Due to the Hilbert—Schmidt theorem, eigenfunctions of the Sturm-Liouville operator
form an orthonormal basis for H = L2(0, [).

2.2 Solving Linear Partial Differential Equations

We now consider a few linear partial differential equations and their solutions.

Example 2.1 (Wave equation). Consider a vibrating string of length /. The evolution
of its displacement u(x, t), at position x and time ¢, is modeled by the following wave
equation:

uy = gy, 0<x<lI, (2.2)
u@©,t) =u(,t) =0, 2.3)
ux,0) = f(x), ux,0)=g), 2.4

where ¢ is a positive constant (wave speed), and f, g are given initial data. By separating
variables, u = X (x)T (t), we arrive at an eigenvalue problem for the Laplacian 9y,



