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Léam the basic facts:

® derivatives (p. 115) and antiderivatives (p. 217) of common functions;

® the product (p. 115), quotient (p. 115), and chain rules (p. 116) for finding derivatives;

® the midpoint, left and right rectangle, and trapezoid approximations for estimating definite integrals (p. 259);

® finding antiderivatives by substitution (p. 219);

@ the important theorems: Rolle’s theorem (p. 130), the Mean Value theorem (p. 130), and especially the
Fundamental Theorem of Calculus (p. 251).

(Barron’s AP Calculus Flash Cards are a great way to study these!)

Understand that a derivative is an instantaneous rate of change, and be able to apply that concept to:

® find equations of tangent lines (p. 163);

® determine where a function is increasing/decreasing (p. 164), concave up/down (p. 165), or has maxima,
minima, or points of inflection (pp. 165, 171);

@ analyze the speed, velocity, and acceleration of an object in motion (p. 181);

@ solve related rates problems (p. 189), using implicit differentiation (p. 126) when necessary.

Understand that integrals represent accumulation functions based on antiderivatives, and be able to apply
those concepts to:

® the average value of a function (p. 272);

@ area (p. 293) and volume (p. 300);

@ position of object in motion and distance traveled (p. 347);

® total amount when given the rate of accumulation (p. 352);

@ differential equations, including solutions and slope fields (p. 369).

Be able to apply any of the above calculus concepts to functions defined algebraically, graphically, or in
tables.

Be able to maximize your score on the exam by:

® answering all the multiple-choice questions;

® knowing how and when to use your calculator, and when not to;

® understanding what work you need to show;

® knowing how to explain, interpret, and justify answers when a question requires that.
(The free-response solutions in this book model such answers.)




Master the Essential 5 listed for the AB Calculus Exam. These form the core for questions that determine
your AB subscore, and provide the essential knowledge base you’ll need for questions related to the addition-
al BC topics.

Understand how to extend AB Calculus concepts to more advanced situations, including:

g

@® using L'Hopital’s rule to find limits of indeterminate forms (p. 131);

@ using limits to analyze improper integrals (p. 309);

@ solving logistic differential equations (p. 387) and estimating solutions using Euler’s method (p. 373);
@ finding antiderivatives using integration by parts (p. 226) or partial fractions (p. 225);

@ finding arc lengths (p. 307).

Be able to apply calculus concepts to parametrically defined functions (pp. 77, 125, 256, 297, 349) and
polar functions (pp. 80, 191, 298).

Know how to analyze the position, velocity, speed, acceleration, and distance traveled for an object in
motion in two dimensions by applying calculus concepts to vectors (p. 183).

Understand infinite series. You must be able to:

® determine whether a series converges or diverges (p. 409);

® use Taylor’s theorem to represent functions as power series (p. 426);
® determine the interval of convergence for a power series (p. 421);

® find bounds on the error for estimates based on series (pp. 420, 433).
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his book is intended for students who are preparing to take either of the two

Advanced Placement Examinations in Mathematics offered by the College
Entrance Examination Board, and for their teachers. It is based on the May 2014 course
description published by the College Board, and covers the topics listed there for both
Calculus AB and Calculus BC.

Candidates who are planning to take the CLEP Examination on Calculus with
Elementary Functions are referred to the section of this Introduction on that examination
on page 10.

THE COURSES iR#E

Calculus AB and BC are both full-year courses in the calculus of functions of a single
variable. Both courses emphasize:

(1) student understanding of concepts and applications of calculus over manipula-
tion and memorization;

(2) developing the student’s ability to express functions, concepts, problems, and
conclusions analytically, graphically, numerically, and verbally, and to understand how
these are related; and

(3) using a graphing calculator as a tool for mathematical investigations and for
problem-solving.

Both courses are intended for those students who have already studied college-
preparatory mathematics: algebra, geometry, trigonometry, analytic geometry, and ele-
mentary functions (linear, polynomial, rational, exponential, logarithmic, trigonometric,
inverse trigonometric, and piecewise). The AB topical course outline that follows can be
covered in a full high-school academic year even if some time is allotted to studying ele-
mentary functions. The BC course assumes that students already have a thorough knowl-
edge of all the topics noted above.

TOPICS THAT MAY BE TESTED ON THE
CALCULUS AB EXAM A9 ABEiXhalgEEERMIRM

1. Functions and Graphs

Rational, trigonometric, inverse trigonometric, exponential, and logarithmic
functions.

2. Limits and Continuity
Intuitive definitions; one-sided limits; functions becoming infinite; asymptotes and
’ ; - ; . sin®
graphs; indeterminate limits of the form % or — using algebra; lim — ;
o -0

estimating limits using tables or graphs.



2 AP Calculus

Definition of continuity (in terms of limits); kinds of discontinuities; theorems
about continuous functions; Extreme Value and Intermediate Value Theorems.

Differentiation

Definition of derivative as the limit of a difference quotient and as instantaneous
rate of change; derivatives of power, exponential, logarithmic, trig and inverse trig
functions; product, quotient, and chain rules; differentiability and continuity; esti-
mating a derivative numerically and graphically; implicit differentiation; derivative
of the inverse of a function; the Mean Value Theorem; recognizing a given limit as
a derivative.

Applications of Derivatives

Rates of change; slope; critical points; average velocity; tangent line to a curve at a
point and local linear approximation; increasing and decreasing functions; using the
first and second derivatives for the following: local (relative) max or min, concavi-
ty, inflection points, curve sketching, global (absolute) max or min and optimiza-
tion problems; relating a function and its derivatives graphically; motion along a
line; related rates; differential equations and slope fields.

The Definite Integral

Definite integral as the limit of a Riemann sum; area; definition of definite integral;
properties of the definite integral; use of Riemann sums (left, right and midpoint
evaluations) and trapezoidal sums to approximate a definite integral; estimating defi-
nite integrals from tables and graphs; comparing approximating sums; average value
of a function; Fundamental Theorem of Calculus; graphing a function from its deriv-
ative; accumulated change as integral of rate of change.

Integration
Antiderivatives and basic formulas; antiderivatives by substitution; applications of
antiderivatives; separable differential equations; motion problems.

Applications of Integration to Geometry
Area of a region, including between two curves; volume of a solid of known cross
section, including a solid of revolution.

Further Applications of Integration and Riemann Sums

Velocity and distance problems involving motion along a line; other applications
involving the use of integrals of rates as net change or the use of integrals as accu-
mulation functions; average value of a function over an interval.

Differential Equations
Basic definitions; geometric interpretations using slope fields; solving first-order
separable differential equations analytically; exponential growth and decay.

TOPICS THAT MAY BE TESTED ON THE
CALCULUS BC EXAM fR5YBCEXROJREEENHIAR

Any of the topics listed above for the Calculus AB exam may be tested on the BC exam.

The following additional topics are restricted to the BC exam.

1. Functions and Graphs
Parametrically defined functions; polar functions; vector functions.
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10.

Limits and Continuity
No additional topics.

Differentiation
Derivatives of polar, vector, and parametrically defined functions; indeterminate
forms; L'Hopital’s rule.

Applications of Derivatives
Tangents to parametrically defined curves; slopes of polar curves; analysis of
curves defined parametrically or in polar or vector form.

The Definite Integral
Integrals involving parametrically defined functions.

Integration
By parts; by partial fractions (involving nonrepeating linear factors only); improper
integrals.

Applications of Integration to Geometry
Area of a region bounded by parametrically defined or polar curves; arc length.

Further Applications of Integration and Riemann Sums
Velocity and distance problems involving motion along a planar curve; velocity and
acceleration vectors.

Differential Equations
Euler’s method; applications of differential equations, including logistic growth.

Sequences and Series

Definition of series as a sequence of partial sums and of its convergence as the limit
of that sequence; harmonic, geometric, and p-series; integral, ratio, and comparison
tests for convergence; alternating series and error bound; power series, including
interval and radius of convergence; Taylor polynomials and graphs; finding a power
series for a function; Maclaurin and Taylor series; Lagrange error bound for Taylor
polynomials; computations using series.

THE EXAMINATIONS =iz

The Calculus AB and BC Examinations and the course descriptions are prepared by com-
mittees of teachers from colleges or universities and from secondary schools. The exami-
nations are intended to determine the extent to which a student has mastered the subject
matter of the course.

Each examination is 3 hours and 15 minutes long, as follows:
Section I has two parts. Part A has 28 multiple-choice questions for which 55 min-

utes are allowed. The use of calculators is not permitted in Part A.

Part B has 17 multiple-choice questions for which 50 minutes are allowed. Some of

the questions in Part B require the use of a graphing calculator.

Section II, the free-response section, has a total of six questions in two parts:

Introduction 3




4 AP Calculus

Part A has two questions, of which some parts require the use of a graphing calcula-
tor. After 30 minutes, however, you will no longer be permitted to use a calculator. If you
finish Part A early, you will not be permitted to start work on Part B.

Part B has four questions and you are allotted an additional 60 minutes, but you are
not allowed to use a calculator. You may work further on the Part A questions (without
your calculator).

The section that follows gives important information on the use (and misuse!) of
the graphing calculator.

THE GRAPHING CALCULATOR: USING YOUR GRAPHING
CALCULATOR ONTHE AP EXAM

Bt EEs: EAPENhERSIHERITES
The Four Calculator Procedures itEB{ERMNSE

Each student is expected to bring a graphing calculator to the AP Exam. Different models
of calculators vary in their features and capabilities; however, there are four procedures
you must be able to perform on your calculator:

C1. Produce the graph of a function within an arbitrary viewing window.
C2. Solve an equation numerically.

C3. Compute the derivative of a function numerically.

C4. Compute definite integrals numerically.

Guidelines for Calculator Use i+&s8{Emigd

1. On multiple-choice questions in Section I, Part B, you may use any feature or
program on your calculator. Warning: Don’t rely on it too much! Only a few of these
questions require the calculator, and in some cases using it may be too time-consuming
or otherwise disadvantageous.

2. On the free-response questions of Section II Part A:

(a) You may use the calculator to perform any of the four listed procedures. When
you do, you need only write the equation, derivative, or definite integral (called the
“setup”) that will produce the solution, then write the calculator result to the required
degree of accuracy (three places after the decimal point unless otherwise specified). Note
especially that a setup must be presented in standard algebraic or calculus notation, not in
calculator syntax. For example, you must include in your work the setup

n
Loost dt even if you use your calculator to evaluate the integral.

(b) For a solution for which you use a calculator capability other than the four
listed above, you must write down the mathematical steps that yield the answer. A correct
answer alone will not earn full credit and will likely earn no credit.

(c) You must provide mathematical reasoning to support your answer. Calculator
results alone will not be sufficient.

The Procedures Explained $%i588

Here is more detailed guidance for the four allowed procedures.

C1. “Produce the graph of a function within an arbitrary viewing window.” Be sure
that you create the graph in the window specified, then copy it carefully onto your exam
paper. If no window is prescribed in the question, clearly indicate the window dimen-
sions you have used. When a graph is used to support justification in a free response
question, it must be clearly labeled as to what is being graphed.

C2. “Solve an equation numerically” is equivalent to “Find the zeros of a function”
or “Find the point of intersection of two curves.” Remember: you must first show your



setup—write the equation out algebraically; then it is sufficient just to write down the
calculator solution.

C3. “Compute the derivative of a function numerically.” When you seek the value
of the derivative of a function at a specific point, you may use your calculator. First, indi-
cate what you are finding— for example, f'(6)—then write the numerical answer
obtained from your calculator. Note that if you need to find the derivative of the function,
rather than its value at a particular point, you must write the derivative symbolically.
Note: some calculators are able to perform symbolic operations.

C4. “Compute definite integrals numerically.” If, for example, you need to find the
area under a curve, you must first show your setup. Write the complete integral, includ-
ing the integrand in terms of a single variable, with the limits of integration. You may
then simply write the calculator answer; you need not compute an antiderivative.

Accuracy BHRE

Calculator answers must be correct to three decimal places. To achieve this required
accuracy, never type in decimal numbers unless they came from the original question.
Do not round off numbers at intermediate steps, as this is likely to produce error accumu-
lations resulting in loss of credit. If necessary, store intermediate answers in the calcula-
tor’s memory. Do not copy them down on paper; storing is faster and avoids transcription
errors. Round off only after your calculator produces the final answer.

Sample Solutions of Free-Response Questions
Fi=tRE B R GURR AR

The following set of examples illustrates proper use of your calculator on the examina-
tion. In all of these examples, the function is

10x
= for 0s=sx<4.
Jf(x) W or x
1. Graph fin [04] x [0,3].
Set the calculator window to the 3~
dimensions printed in your exam paper.
10x
Graph y = : B
il x+4 .
Copy your graph carefully into
the window on the exam paper. 1=
1 L | 1
0 1 2 4

Viewing window [0,4] x [0,3]

2.  Write the tangent line for f(x) at x = 1.
Note that (1) = 2. Then, using your calculator, evaluate the derivative:

=12
Then write the tangent-line (or local linear) approximation
fx) =fM+ f'Ox-1)
= 2+12(x-1)=12x+0.8

You need not simplify, as we have, after the last equals sign just above.

Introduction 8



6 AP Calculus

Find the coordinates of any maxima of f. Justify your answer.

Since finding a maximum is not one of the four allowed procedures, you must
use calculus and show your work, writing the derivative algebraically and setting it
equal to zero to find any critical numbers:

_ (x* +4)10 - 10x(2x) _ 40 —10x
B (x* +4) (& +4)
102 = x)(2 + x)

S01 ey 4 4P

f(x)

Then f'(x) =0 at x =2 and at x = —2; but -2 is not in the specified domain.

We analyze the signs of f' (which is easier here than it would be to use the
second-derivative test) to assure that x = 2 does yield a maximum for f. (Note that
the signs analysis alone is not sufficient justification.)

incr decr
f 1 i 1

4

, 0
f + =

Since f’ is positive to the left of x = 2 and negative to the right of x = 2, f does

have a maximum at

A : ; i ; 5

—but you may leave f(2) in its unsimplified form, without evaluating to 30

You may use your calculator’s maximum-finder to verify the result you obtain
analytically, but that would not suffice as a solution or justification.

Find the x-coordinate of the point where the line tangent to the curve y = f(x) is
parallel to the secant on the interval [0.4].

Since f(0) = 0 and f{4) = 2, the secant passes through (0,0) and (4,2) and has
slope m = —;— .

To find where the tangent is parallel to the secant, we find f'(x) as in Example 3.
We then want to solve the equation

40 -10x*
(x2 + 4)2

The last equality above is the setup; we use the calculator to solve the equation:
x = 1.458 is the desired answer.

p 1 1
f (X)=5$ =-2'

Estimate the area under the curve y = f (x) using a Trapezoidal Sum with four equal
subintervals:

v

j:f(x)dxz( W (1))(1)+(ﬁ”—;ﬂ9)(1)+(f&2tﬁ3_))(1)+(&3) +10)

=(0 ;— 2)(1) +(2 +2(5/2))(1) +((5/2) +2(30/13))(1) +((30/13) + 2)(1)

You may leave the answer in this form or simplify it to 7.808.



