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C Preface )

The extended finite element method (X-FEM) is a novel numerical methodology,
which was first proposed by Belytschko et al. in 1999. It has subsequently been
developed very quickly in the mechanics field worldwide. Based on the finite
element method and fracture mechanics theory, X-FEM can be applied to solve
complicated discontinuity issues including fracture, interface, and damage
problems with great potential for use in multi-scale computation and multi-phase
coupling problems.

The fundamental concept and formula of X-FEM are introduced in this book, as
well as the technical process of program implementation. The expressions for
enriched shape functions of the elements are provided, which include the
displacement discontinued crack, termed as “strong discontinuity”, and strain
discontinued interface, termed as “weak discontinuity”, like heterogeneous
materials with voids and inclusions, interfaces of bimaterial and two-phase
flows. X-FEM can be used to simulate element-crossed cracks and element-
embedded cracks. Cracks with complex geometry can be modeled by structured
meshes and can propagate along arbitrary route in the elements without the need
for a re-meshing process, which provides considerable savings in computation
cost whilst achieving precision.

In the early 1990s, the first author of this book, Prof. Zhuo Zhuang, was
working on Ph.D. research under Prof. Patraic O’Donoghue at University Col-
lege Dublin, Ireland, and completed a thesis on the development of the finite
element method for dynamic crack propagation in gas pipelines. In 1995, he
returned to China and took an academic position at Tsinghua University. He has
the privilege of learning from and working with Prof. Keh-Chih Hwang, and is
striving to simulate arbitrary crack growth in three-dimensional continuities and
curved shells. This is a natural choice for crack propagation, in which the original
failure behavior of the structures reappears. In 2011, this aspiration was released
by Dr. Binbin Cheng, who is the third author of this book. From his Ph.D. thesis
work at Tsinghua University, they have developed an X-FEM code, named
SAFRAC, with its own properties. The second author, Dr. Zhanli Liu, obtained a
doctoral degree in 2009. The research thesis “The Investigation of Crystal
Plasticity at Microscale by Discrete Dislocation and Nonlocal Theory” was
nominated and achieved a national excellent doctor degree thesis in 2011. After
graduation from Tsinghua University, he went to Northwestern University, USA
to conduct postdoctoral research under Prof. Ted Belytschko. He continued to
develop the X-FEM method for dynamic crack propagation and applications in
heterogeneous materials, like ultrasonic wave propagation in three-dimensional
polymer matrices enhanced by particles and short fibers. He returned to Tsinghua
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University and took an academic position in 2012. The fourth author, Dr. Jianhui
Liao, obtained a doctoral degree in 2011 at Tsinghua University. His thesis work
focuses on the application of X-FEM simulation in two-phase flows. One pro-
fessor and three former Ph.D. students are working together to write this book in
order to demonstrate the research achievements on X-FEM in the last decade.

In this book, Chapter 1 reviews the development history, reference summa-
rization, and research actuality of X-FEM. Chapters 2 and 3 provide an intro-
duction to fracture mechanics, considering the essential concepts of static and
dynamic linear elastic fracture mechanics, such as the crack propagation crite-
rion, the calculation of stress intensity factor by interaction integral, the nodal
force release technique to simulate crack propagation in conventional FEM, and
so on. These two chapters provide essential knowledge of fracture mechanics
essential for study of the subsequent chapters, Readers who are familiar with
fracture mechanics can skip these two chapters. Chapters 4 and 5 contain the
basic ideas and formulations of X-FEM. Chapter 4 focuses on the theoretical
foundation, mathematical description of the enrichment shape function, discrete
formulation, etc. In Chapter 5, based on the program developed by the authors
and their co-workers, numerical studies of two-dimensional fracture problems
are provided to demonstrate the capability and efficiency of the algorithm and the
X-FEM program in applications of strong and weak discontinuity problems. In
Chapters 6—9, scientific research conducted by the author’s group is given as
examples to introduce the applications of X-FEM. In Chapter 6, a novel theory
formula and computational method of X-FEM is developed for three-dimen-
sional (3D) continuum-based (CB) shell elements to simulate arbitrary crack
growth in shells using the concept of enriched shape functions. In Chapter 7, the
algorithm is discussed and a program is developed based on X-FEM for simu-
lating subinterfacial crack growth in bimaterials. Numerical analyses of the
crack growth in bimaterials provide a clear description of the effect on fracture of
the interface and loading. In Chapter 8, a method for representing discontinuous
material properties in a heterogeneous domain by X-FEM is applied to study
ultrasonic wave propagation in polymer matrix particulate/fibrous composites.
In Chapter 9, a simulation method of transient immiscible and incompressible
two-phase flows is proposed, which demonstrates how to deal with multi-phase
flow problems by applying X-FEM methodology. Based on the scientific
research in the author’s group, Chapter 10 gives the applications of X-FEM in
other frontiers of mechanics, e.g. nano-mechanics, multi-scale simulations,
crack branches, and so on.

This book was published in a Chinese version in 2012, and was the first book
on X-FEM published in China. At that time, Dr. Zhanli Liu was a postdoctoral
fellow working at Northwestern University in the USA. He presented a copy of
the book to Prof. Ted Belytschko to express our respect for him. Ted was very
happy to see it and made complimentary remarks about the book, although he
could not follow the Chinese characters but only the equations and figures. He
encouraged us to publish this book in an English version.
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Regarding the English version, we would like to thank Mr. Lei Shi, Ms.
Qiuling Zhang, and Ms. Hongmian Zhao at Tsinghua University Press. Without
their encouragement and help, we could not have completed this book. We are
also grateful to the Ph.D. candidates Ms. Dandan Xu and Mr. Qinglei Zeng for
the computational examples that they provided.

This book is suitable for teachers, engineers, and graduate students on the
disciplines of mechanics, civil engineering, mechanical engineering, and aero-
space engineering. It can also be referenced by X-FEM program developers.

Zhuo Zhuang
Zhanli Liu
Binbin Cheng
Jianhui Liao
October 2013
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\ Development of X-FEM 8

1.1 SIGNIFICANCE OF STUDYING COMPUTATIONAL
FRACTURE MECHANICS

Fracture is one of the most important failure modes. In various engineering
fields, many catastrophic accidents have started from cracks or ends at crack
propagation, such as the cracking of geologic structures and the collapse of
engineering structures during earthquakes, damage of traffic vehicles during
collisions, the instability crack propagation of pressure pipes, and the fracture
of mechanical components. These accidents have caused great loss to people’s
lives and economic property. However, usually it is very difficult to quanti-
tatively provide the causes of crack initiation. So research on fracture me-
chanics, which is mainly focused on studying the propagation or arrest of
initiated cracks, is of great theoretical importance and has broad application
potential.

Modern fracture mechanics has been booming and has been studied
extensively in recent years; this is because it is already deeply rooted in the
modern high-technology field and engineering applications. For example,
large-scale computers facilitate the numerical simulation of complicated
fracture processes, and new experimental techniques provided by modern
physics, such as advanced scanning electron microscope (SEM) analysis,
surface analysis, and high-speed photography, make it possible to study the
fracture process from the micro-scale to the macro-scale. This understanding
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of the basic laws of fracture plays an important role in theoretically guiding the
applications of fracture mechanics in engineering, such as the toughening of
new materials, the development of biological and biomimetic materials, the
seismic design of buildings and nuclear reactors, the reliability of micro-
electronic components, earthquake prediction in geomechanics, the explora-
tion and storage of oil and gas, the new design of aerospace vehicles, etc. After
integration with modern science and high-technology methods, fracture me-
chanics is taking on a new look.

Cracks in reality are usually in three dimensions, and have complicated
geometries and arbitrary propagation paths. For a long time, one of the
difficult challenges of mechanics has been to study crack propagation along
curved or kinked paths in three-dimensional structures. In these situations, the
“straight crack” assumption in conventional fracture mechanics is no longer
valid, so theoretical methods are very limited for this problem. Experiments
are another important way to study the propagation of curved cracks, but most
results are empirical and phenomenological, and mainly focus on planar
cracks. In recent decades, numerical simulations have developed rapidly along
with the development of computer technology. The new progress in compu-
tational mechanics methods, such as the finite element method, boundary
element method, etc., provides the possibility of solving the propagation of
curved cracks. Modeling crack propagation in three-dimensional solids and
curved surfaces has become one of the hottest topics in computational me-
chanics. Computational fracture mechanics methods roughly include the finite
element method with adaptive mesh (Miehe and Giirses, 2007), nodal force
release method (Zhuang and O’Donoghue, 2000a, b), element cohesive model
(Xu and Needleman, 1994), and embedded discontinuity model (Belytschko
et al., 1988). All of these methods have some limitations when dealing with
cracks with complicated geometries, such as when the crack path needs to be
predefined, the crack must propagate along the element boundary, the
computational cost is high, etc. In the last decades, the extended finite element
method (X-FEM) proposed in the late 1990s has become one of the most
efficient tools for numerical solution of complicated fracture problems.

1.2 INTRODUCTION TO X-FEM

One of the greatest contributions the scientists made to mankind in the
twentieth century was the invention of the computer, which has greatly pro-
moted the development of related industry and scientific research. Taking
computational mechanics as an example, many new methods, such as the finite
element method, finite difference, and finite volume methods have rapidly
developed as the invention of computer. Thanks to these methods, a lot of
traditional problems in mechanics can be simulated and analyzed numerically;
more importantly, a number of engineering and scientific problems can be
modeled and solved. As the development of modern information technology
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and computational science continues, simulation-based engineering and sci-
ence has become helpful to scientists in exploring the mysteries of science, and
provides an effective tool for the engineer to implement engineering in-
novations or product development with high reliability. The finite element
method (FEM) is just one of the powerful tools of simulation-based engi-
neering and science.

Since the appearance of the first FEM paper in the mid-1950s, many papers
and books on this issue have been published. Some successful experimental
reports and a series of articles have made great contributions to the develop-
ment of FEM. From the 1960s, with the emergence of finite element software
and its rapid applications, FEM has had a huge impact on computer-aided
engineering analysis. The appearance of numerous advanced software not
only meets the requirement of simulation-based engineering and science, but
also promotes further development of the finite element method itself. If we
compare a finite element to a large tree, it is like the growth of several
important branches, like hybrid elements, boundary elements, the meshless
method, extended finite elements, etc., make this particular tree prosper.

In analysis by the conventional finite element method, the physical model
to be solved is divided into a series of elements connected in a certain
arrangement, usually called the “mesh”. However, when there are some in-
ternal defects, like interfaces, cracks, voids, inclusions, etc. in the domain, it
will create some difficulties in the meshing process. On one hand, the element
boundary must coincide with the geometric edge of the defects, which will
induce some distortion in the element; on the other hand, the mesh size will be
dependent on the geometric size of the small defects, leading to a nonuniform
mesh distribution in which the meshes around the defects are dense, while
those far from defects are sparse. As we know, the smallest mesh size decides
the critical stable time increment in explicit analysis. So the small elements
around the defects will heavily increase the computational cost. Also, defects,
like cracks, can only propagate along the element edge, and not flow along a
natural arbitrary path. Aiming at solving these shortcomings by using the
conventional FEM to solve crack or other defects with discontinuous in-
terfaces, Belytschko and Moés proposed a new computational method called
the “extended finite element method (X-FEM)” (Belytschko and Black, 1999;
Moés et al., 1999), and made an important improvement to the foundation of
conventional FEM. In the last 10 years, X-FEM has been constantly improved
and developed, and has already become a powerful and promising method for
dealing with complicated mechanics problems, like discontinuous field,
localized deformation, fracture, and so on. It has been widely used in civil
engineering, aviation and space, material science, etc.

The core idea of X-FEM is to use a discontinuous function as the basis of a
shape function to capture the jump of field variables (e.g., displacement) in the
computational domain. So in the calculations, the description for the discon-
tinuous field is totally mesh-independent. It is this advantage that makes it very
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suitable for dealing with fracture problems. Figure 1.1 is an example of a
three-dimensional fracture simulated by X-FEM (Areias and Belytschko,
2005b), in which we find that the crack surface and front are independent of
the mesh. Figure 1.2 demonstrates the process of transition crack growth under
impact loading on the left lower side of a plane plate, in which we can
investigate impact wave propagation in the plate and the stress singularity field
at the crack tip location. In addition, it is very convenient to model the crack
with complex geometries using X-FEM; one example of crack branching
simulation is given in Figure 1.3 (Xu et al., 2013).

X-FEM is not only used to simulate cracks, but also to simulate hetero-
geneous materials with voids and inclusions (Belytschko et al., 2003b;
Sukumar et al., 2001). The main difference is that: for cracks, the discontin-
uous field at the crack surface is the displacement; for inclusions, the deriv-
ative of displacement with respect to a spatial coordinate — the strain — is
discontinuous. These two situations are defined as strong discontinuity (jump
of displacement field) and weak discontinuity (jump of derivative of
displacement with respect to spatial coordinate) respectively. Two different
enrichment shape functions will be used to capture the two different discon-
tinuities. Figure 1.4 shows an example of studying the effective modulus of
carbon nanotube composites by X-FEM modeling. In the simulations, the
mesh boundary does not have to coincide with the material interfaces, so the
representative volume element (RVE) can be meshed by brick elements, which
will greatly increase the efficiency of modeling.

The other advantage of X-FEM is that it can make use of known analytical
solutions to construct the shape function basis, so accurate results can be
obtained even using a relatively coarse mesh. When applying conventional
FEM to model the singular field, like the stress field near a crack tip or
dislocation core, a very dense mesh has to be used. However, in X-FEM, by
introducing the known displacement solution of cracks or dislocations into the
enrichment shape function, a satisfied solution can be obtained under a rela-
tively coarse mesh. Figure 1.5 shows a plate with an initial crack at the left

FIGURE 1.1 X-FEM modeling of 3D frac-
ture: displacement is magnified 200 times
(Areias and Belytschko, 2005b).
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FIGURE 1.2 Process of transition crack growth under impact on the left lower side.

edge; the stress intensity factor can be calculated as a function of crack length.
In the X-FEM simulation, without using the fine mesh near the crack tip, the
calculated stress intensity factor (SIF) for 41 by 41 uniform elements can
compare well with analytic solution.

It is worth pointing out that, other methods, like the boundary element
method and meshless method, also have important applications on solving

wapter | 1 Overview of Extended Finite Element Method @
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FIGURE 1.3 X-FEM modeling of crack branching (Xu et al., 2013).

FIGURE 1.4 X-FEM model of nanotube
composites (Belytschko et al., 2003b).
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FIGURE 1.5 Stress intensity factor of a static crack in a finite plate.

discontinuous problems (Blandford et al., 1981; Belytschko et al., 1994).
However, some inherent flaws limit their promotion: for example, the
boundary element method is not good at dealing with problems with strong
nonlinearity, heterogeneity, and so on; the meshless method lacks a solid
theoretical foundation and rigorous mathematical proof, so there are still some
uncertain parameters like the radius of the interpolation domain, background
integration domain, etc.; commercial software still does not have mature
modules for these two methods. In contrast, X-FEM is developed under the
standard framework of FEM, and retains all the advantages of the conventional
FEM method. Some commercial software, like ABAQUS and LS-DYNA,
already have a basic X-FEM module for fracture simulations.

Given the above, the characterizations and advantages of X-FEM can be
summarized as follows:

1. It allows for crack location and propagation inside the elements; cracks
with complex geometry can be modeled by structured meshes and can
propagate element by element without remeshing, which will greatly save
computational cost.

2. The elements containing crack surfaces and crack tips are enriched with
additional degrees of freedom, so that the discontinuous shape function is
used to capture the singularity of the stress field near the crack tip. An
accurate solution can therefore be obtained using a coarse mesh.

3. Compared with the remeshing technique in FEM, mapping of field vari-
ables after crack propagation is not necessary in X-FEM.

4. Compared with the boundary element method, X-FEM is applicable for
multi-material or multi-phase problems, especially problems with geo-
metric and contact nonlinearities.

5. It is convenient to implement in commercial software and with parallel
computing.

All the features above illustrate why X-FEM has many successful
applications.



