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Preface

This book was written for a one-semester course in applied matrix theory
for senior undergraduate students. It can also be used for a one-semester
graduate course. The book is accessible to students who, in various dis-
ciplines, have basic knowledge in linear algebra, calculus, and numerical
analysis. It is self-contained. Some recent developments in matrix theory
are also contained in the book.

At the beginning of the book, we introduce some basic symbols and
notations which will be used throughout the book. We study and re-
view several important topics in linear algebra [1; 6; 27; 43|, for instance,
quadratic forms and symmetric positive definite matrices, complex inner
product spaces, Hermitian and unitary matrices, the Kronecker product
and sum, etc., which are essential for the development of later chapters.

It is well-known that the essential notions of distance and size in linear
vector spaces are captured by norms. We therefore introduce vector and
matrix norms in Chapter 2 and study their properties before we develop a
perturbation and error analysis. We study effects of perturbation and error
on numerical solutions of linear systems. Error analysis on floating point
operations is also discussed briefly.

In Chapter 3 we study linear least squares (LS) problems:

i [b— Ay||2
where the matrix A € R™*™ with m > n and the vector b € R™ are given.
We introduce some well-known orthogonal transformations and the QR
factorization for constructing efficient algorithms for solving LS problems.

We introduce the Moore-Penrose generalized inverse A! in Chapter 4
and study some basic properties of this inverse [6; 42]. The Moore-Penrose
generalized inverse was used in Chapter 3 for the solution of LS problems

vii
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and will be used in Chapter 6 for constructing the generalized superoptimal
preconditioner. We show that A'b is a minimizer to the least squares
problem:

in [b— A
min | yll2

where the matrix A € C™*™ and the vector b € C™ are given. Finally, we
discuss other generalized inverses related to the Moore-Penrose generalized
inverse.

In Chapter 5 we study the conjugate gradient (CG) method. The CG
method proposed by Hestenes and Stiefel [25] in 1952 is one of the best
known iterative methods for solving any symmetric positive definite lin-
ear system Ax = b [24; 30; 38]. The method is a realization of an or-
thogonal projection technique onto the Krylov subspace (A, 1y, k) where
rop = b — Axg with a given initial vector xg. Preconditioning technique is
also discussed briefly.

In Chapter 6 we introduce two popular preconditioners: the optimal
preconditioner cyr(A) proposed by Chan [12] in 1988 and the superoptimal
preconditioner t;(A) proposed by Tyrtyshnikov [39] in 1992, respectively.
The optimal preconditioner is studied from an operator viewpoint and a
generalized superoptimal preconditioner is constructed by using the Moore-
Penrose generalized inverse. A spectral relationship between the optimal
preconditioned matrix and the superoptimal preconditioned matrix is also
discussed [29].

We propose two optimal preconditioners for different functions of matri-
ces in Chapter 7. More precisely, let f be a function of matrices from C**"
to C**™. Given A € C**™, there are two choices of constructing optimal
preconditioners for f(A): ey (f(A)) and f(cu(A)). Both of them are called
optimal preconditioners of f(A) [32]. We study properties of both ¢y (f(A))
and f(ey(A)) for different functions of matrices, for instance, the matrix
exponential, the matrix cosine and matrix sine, and the matrix logarithm,
respectively.

In 2005, Bottcher and Wenzel [7] proposed the following conjecture: for
any real matrices X,Y € R™*", the following inequality may hold

IXY - YX||r < V2| X|FIY]r

where || - ||r is the Frobenius norm. In the final chapter, we prove the
conjecture in an elementary way and study its related problems.

In writing the book, we have been influenced and helped by many peo-
ple. In particular, we appreciate some helpful and detailed comments of
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several people who have taken the time to read the preliminary manuscript
that was the precursor of this book: Professor Z. J. Bai of School of Math-
ematical Sciences, Xiamen University; Professor Z. L. Xu of Department of
Mathematics, Shanghai Maritime University; and our former PhD student
Dr. Z. Zhao of Department of Mathematics, Hangzhou Dianzi University.
Special thanks go to the most important institution in the authors’ life:
University of Macau for providing a wonderful intellectual atmosphere for
writing this book. Last but not least, we should mention that our families
have given us much needed encouragement, patience, and endless love which
are essential to the completion of the book. Writing of the book is supported
by the research grants MYRGO098(Y2-L3)-FST13-JXQ and MYRGO098(Y3-
L3)-FST13-JXQ from University of Macau; the research grant 010/2015/A
from FDCT of Macao.
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Chapter 1

Introduction and Review

We study and review several important topics in linear algebra [1; 6; 27;
43] which are essential for the development of later chapters.

1.1 Basic symbols

We use the following symbols throughout this book.

Let N denote the set of natural numbers, Z denote the set of inte-
gers, R denote the set of real numbers, C denote the set of complex
numbers, and i = /1.

Let R™ denote the linear vector space of real n-vectors and C"
denote the linear vector space of complex n-vectors. Vectors will
almost always be column vectors.

Let R™*™ denote the linear vector space of m x n real matrices and
C™m*™ denote the linear vector space of m x n complex matrices.
The symbol 0 denotes the zero matrix or the zero vector with
appropriate size.

We use the upper case letters such as A, B, C, A, A, etc. to denote
matrices. We use the bold lower case letters such as u, v, w, etc.
to denote vectors, and use the lower case letters such as z, y, z, a,
3, ete. to denote scalars.

e The symbol a;; denotes the (i, j)th entry in a matrix A.
e For any matrix A, let A7 denote the transpose of A, A* denote

the conjugate transpose of A, and A" denote the Moore-Penrose
generalized inverse of A.

e Let rank(A) denote the rank of a matrix A.
e Let tr(A) denote the trace of a square matrix A.
e Let det(A) denote the determinant of a square matrix A. The
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matrix A is a nonsingular matrix if det(A) # 0, otherwise A is a
singular matrix when det(A) = 0.

e Let diag(ai1,a22,...,an,) denote the n x n diagonal matrix:
gy M 2= )
. 0 ax
diag(a11,a22,...,apn) = 2
. s )
0 -+ 0 ann

e The symbol I,, denotes the n x n idenﬁ;uy matrix, for instance,

1000
0100
0010
0001

Ig=

The symbol e; denotes the ith unit vector, i.e., the ith column
vector of I,,. Sometimes, we use the symbol I to denote the identity
matrix with appropriate size if there is no confusion.

e Let vi,va,...,v;n € R™ (or C*). We use span{vy,va,...,Vy,}
to denote the linear vector space of all linear combinations of
Vi, V2, Vime

e Let dim(S) denote the dimension of a linear vector space S.

1.2 Quadratic forms and positive definite matrices

In this section we study functions in which the terms are squares of variables
or products of two variables. Such functions arise in a variety of applica-
tions, including geometry, vibrations of mechanical systems, statistics, and
electrical engineering.

1.2.1 Quadratic forms
For an equation of the form

a1xy + asxs + -+ apr, =b

where b, a; € Rfori =1,2,...,n, the expression on the left of this equation
is a “linear form”, in which all variables occur to the first power. Now, we
are concerned with “quadratic forms” which are functions of the form

a173 + a3 + -+ + anx? + (all possible terms of form 2ayxz;z; for i < 7).
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For example, a quadratic form in two variables x; and xy is
a122 + agxs + 20311 Ty (1.1)
and a quadratic form in three variables z, z2, and x3 is
aw? -+ azccg + a.3x§ + 2a421 29 + 2052123 + 2062223, (1.2)

The terms in a quadratic form that involve products of different variables
are called the cross-product terms. Note that (1.1) can be written in matrix

e fz2] [

as ag i)

form as

and (1.2) can be written as

a1 a4 as &L
[1'1, Io, 5133] a4 a2 Qg o | . (1.4)
as ag ag T3

The products in (1.3) and (1.4) are both of the form xT Ax where x is the
column vector of variables and A is a symmetric matrix whose diagonal
entries are the coefficients of the squared terms and whose entries off the
main diagonal are half the coefficients of the cross-product terms. By using
the Euclidean inner product, we can write

xT Ax = xT (Ax) = (Ax, %) = (x, Ax). (1.5)
We recall that the Euclidean inner product is defined by

s
x,y) = Zl'iyi
i=1

where x = [z1,22,...,%,]T, ¥ = [Y1,¥2,...,4n]T € R™. Then the Eu-
clidean norm of x is defined by

L 1/2
”xH—xx]/2 ( .IJ) .

i=1
1.2.2  Problems involving quadratic forms

Let x = [z1,xa, ... ,a:n]T € R™. The following are some important mathe-
matical problems relating to quadratic forms.

(i) Find the maximum and minimum values of the quadratic form
xT Ax if x is subject to the constraint ||x|| = 1 where ||x|| is the
Euclidean norm of x.
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(i) What conditions must A satisfy in order for a quadratic form to
satisfy the inequality x” Ax > 0 for all x # 0?

Theorem 1.1. Let A € R™*"™ be a symmetric matriz whose eigenvalues in
decreasing order are \y > Ay > -+ > An. If x s subject to the constraint
Ix|| =1, then:

(a) A >xTAx > A,.
(b) xTAx = A1 if x is an eigenvector of A corresponding to A1 and
xT Ax = A, if x is an eigenvector of A corresponding to A, .

Proof. We only prove (a). Since A is symmetric, there is an orthonor-
mal basis for R™ consisting of eigenvectors of A. Suppose that S =
{v1,va,...,v,} is such a basis where vy is an eigenvector corresponding
to the eigenvalue Ay for k = 1,2,...,n. If (-, -) denotes the Euclidean inner
product, then for any x in R"™,
x = (X, vi)vi + (X, Va)vg + -« + (X, V) Vs
Thus,
Ax = (x,v1)Avy + (x, va)Avs + - -+ (x, v, ) AV,

= (x,vi)A1v1 + (X, Vo) dova + - - + (X, Vi) An Vi

= M(x,vi)vi + A (X, va)va + -+ 4+ A (X, Vi ) Vi
It follows that the coordinate vectors for x and Ax relative to the basis S
are

(x)s = [(X,V1>, (% V2o o (xv Vﬂ)]Tv

and

(Ax)s = [M (%, v1), Ao (X, v2), ..., A (x, v )]T.
Consequently from the fact that ||x|| = 1, we obtain

IxI? = (x,v1)% + (x,v2)2 4+ -+ (x,v,)2 =11
and

(x, AX) = A1 (x,v1)? 4+ A2 (x, va)? + - - - 4 An(x, v )2

Using these two equations and (1.5), we can prove that xTAx < A; as
follows:

xTAx = (x,Ax) =\ (X,V1)2 + Aa(x, vz)2 4.+ )\n(x,vﬂ)2
< /\1(X, V1)2 + A\ (x, V2)2 + o4 A (x,vn)z

= Al((x,v1)2 +(x,va)2 4+ <x,vn>2) = M.

Similarly, we can show that x7 Ax > \,,. O
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1.2.3 Positive definite matriz
We introduce the definition of the symmetric positive definite matrix.

Definition 1.1. A quadratic form x” Ax is called positive definite (positive
semidefinite) if xT Ax > 0 (xT Ax > 0) for any x # 0, and a symmetric
matrix A is called a positive definite (positive semidefinite) matrix if x7 Ax
is a positive definite (positive semidefinite) quadratic form.

We remark that a symmetric matrix A is negative definite if xT Ax < 0 for
any x # 0.

Theorem 1.2. A symmetric matric A € R™*"™ is positive definite if and
only if all eigenvalues of A are positive.

Proof. Assume that A is positive definite and let A be any eigenvalue of
A. If x is an eigenvector of A corresponding to A, then x # 0 and Ax = Ax,
S0
0 < xTAx = xThx = MxTx = A[x]?

where ||x|| is the Euclidean norm of x. Since ||x||? > 0 it follows that A > 0.

Conversely, assume that all eigenvalues of A are positive. We must
show that xTAx > 0 for all x # 0. We can normalize x to obtain the
vector y = x/||x|| with the property ||y|| =1 if x # 0. It now follows from
Theorem 1.1 that

y Ay > A, >0
where ), is the smallest eigenvalue of A. Thus,

T
ymy:(i) A(i): L T ax>0
x| BN 1]

which implies
xT Ax > 0.

1.2.4 Other methods to determine the positive definiteness

Our next objective is to give some criteria that can be used to determine
whether a symmetric matrix is positive definite without finding its eigen-
values. To do this it will be helpful to introduce some terminology. Let
a1l aGi12 *- - Ain
az1 A2 --- (2n

apnl Ap2 " Qnn



