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Preface

We are in front of the tremendous catastrophe in modern theoretical physics. Moreover, we have reached the revolutionary
situation not only in physics but also in natural philosophy on the whole. Practically we are in front of the new challenge
since Newton’s Mathematical Principles of Natural Philosophy was first published in 1687. It is impossible to believe that
in more than 300 years after Newton, we have the situation when 96% of matter and energy is of unknown origin. As it is
shown in this monograph, the origin of difficulties consists in the total oversimplification inherent in local physics of the
dissipative processes.

In the latter part of twentieth century, two very important results were obtained:

(1) The Irish physicist John Stewart Bell (1928—-1990) was to show that all local statistical theories of dissipative processes
are wrong in principal.

(2) The Russian physicist Boris V. Alexeev was to show that the derivation of kinetic equation with respect to one-particle
distribution function from the BBGKY equations (prior to introducing any approximation destined to break the Bogo-
lyubov chain) leads to additional terms of the non-local origin, generally of the same order of magnitude, appear in the
Boltzmann equation. Then the passage to the Boltzmann equation means the neglect of non-local effects. These addi-
tional terms cannot be omitted even in the limit cases of kinetic theory, therefore Boltzmann equation is only a plau-
sible equation.

Therefore, the case in point is of unprecedented situation in physics, when the fundamental physical equation is revised.
During my stay in Marseille as invited professor, A.J.A. Favre reminds me Henri Poincaré’s phrase after the death of a great
Austrian physicist—"Boltzmann was wrong, but his mistake is equal to zero.” It is a pity, but the situation in kinetic theory
is much more serious.

The scientific community was convinced that the mentioned results could lead only to rather small corrections in the
modern theoretical physics. So to speak—4% corrections to 96% of the known results, but not quite the reverse! Many
scientists are aware that some way out will be achieved after creation of the unified theory of transport processes working
from the structure of so-called elementary particles to the Universe evolution. This theory is in front of you.

This book reflects the scales of these alterations. One is safe to say that—as the main result of the non-local physical
kinetics—this theory has showed it to be a highly effective tool for solving many physical problems in areas where the
classical theory runs into difficulties.

Author is deeply indebted to V.L. Ginzburg and F. Uhlig for their interest in this work and in the subject in general. I am
thankful to V. Mikhailov, I. Ovchinnikova, and A. Fedoseyev for cooperation.

This book is devoted to the memory of my mother.

January 2014



Historical Introduction and the Problem
Formulation

“Alles Vergangliche «CoTpu cnyyariHble YepTbl -

'Il

ist nur ein Gleichniss U Tbl YBUOWLLB — MUP NPEKPaceH»

Boltzmann's epigraph (Obliterate the accidental features
for his “Vorlesungen (iber Gastheorie” And you will see: the world is splendid.)
Alexander Blok

“The Retribution”

In 1872, L Boltzmann, then a mere 28-year-old, published his famous kinetic equation for the one-particle distribution
function f(r,v,7) [1]. He expressed the equation in the form
Df

5 =7 (). @1

where J* is the collision (stoB) integral, and

D%:%+v-5%+F-% (1.2)
is the substantial (particle) derivative, v and r being the velocity and radius-vector of the particle, respectively.
Equation (I.1) governs (in local approximation) the transport processes in a one-component gas which is sufficiently
rarefied that only binary collisions between particles are of importance. While we are not concerned here with the explicit
form of the collision integral (which determines the change of the distribution function fin binary collisions), note that it
should satisfy conservation laws. For the simplest case of elastic collisions in a one-component gas we have

JJS‘.//,.dv =0,(i=1,2,3),dv=dv,dv,dv., 13)

where V; are the collisional invariants (/; =m, Y, =mv, 3 = mv* / ,» m is the mass of the particle) related to the laws of
conservation of mass, momentum, and energy.

Integrals of the distribution function (i.e. its moments) determine the macroscopic hydrodynamic characteristics of the
system, in particular the number density of particles

n= J fdv (L4)

and the temperature T

3 1
EanT :imjf(v —vo)zdv. (1.5)

Here kg is the Boltzmann constant and v, is the hydrodynamic flow velocity. It follows then that multiplying the
Boltzmann integro-differential equation term by term by collisional invariants 1/;, integrating over all particle velocities,
and using the conservation laws (1.3) we arrive at the differential equations of fluid dynamics, whose general form is known
as the hydrodynamic Enskog equations.

The Boltzmann equation (BE) is not of course as simple as its symbolic form above might suggest, and it is in only a few
special cases that it is amenable to a solution. One example is that of a Maxwellian distribution in a locally, thermodynam-
ically equilibrium gas in the event when no external forces are present. In this case, the equality
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J*=0 (1.6)

is met, giving the Maxwellian distribution function

3/z 2
©_, [(_m _mv”
fr=n (anBT) e"p( ZkBT) ’ an
where V=v —vy is the thermal velocity.

It was much later, years after Boltzmann’s death in 1906, that an analytic method for solving the Boltzmann equation
was developed for the purpose of calculating transport coefficients. This method, developed in 1916-1917 by Chapman and
Enskog [2-5], led to explicit expressions for the coefficients of viscosity, thermal conductivity, diffusion, and later thermal
diffusion in a system with a small parameter (which for Chapman and Enskog’s particular problem of a nonreacting gas was
the Knudsen number, the ratio of the particle’s mean free path to a characteristic hydrodynamic dimension).

However, even in Boltzmann’s days there was a complete awareness that his equation acquires a fundamental impor-
tance for physics and that its range of validity stretches from transport processes and hydrodynamics all the way to
cosmology—thus fully justifying the keen attention it attracted and debates it provoked.

Of the many results L Boltzmann derived from his kinetic equation, one of the most impressive is the molecular-kinetic
interpretation of the second principle of thermodynamics and in particular of the statistical meaning of the concept of
entropy. It turned out that it is possible to define the function

H= Jf Infdv, (18)

(H is the first letter in the English word heat and German word Heizung) which behaves monotonically in a closed
system. If the relation between S, the entropy per unit volume of an ideal gas, and the H-function is written in the form

S = —kgH + const, (1.9)
then one can prove the inequality
as
—>0. .
= (1.10)
The laconic formula
S=klInW, (I.11)

connecting the entropy S and the thermodynamic probability W, is inscribed on Boltzmann’s tombstone.

Ever since their creation, Boltzmann’s physical kinetics and the Boltzmann equation have received severe criticism,
much of which remains of interest even today. Let us elaborate on this.

To begin with, Boltzmann’s contemporaries were very much in the dark regarding the relation between the Boltzmann
equation and classical mechanics—in particular, with the Newton equation. The Boltzmann equation was obtained in a
phenomenological manner based on convincing physical arguments and reflects the fact that the distribution function does
not change along the particle’s trajectory between collisions but rather changes as a result of an “instantaneous” interaction
between colliding particles.

J Loschmidt noted in 1876 that the Boltzmann equation underlying the H-theorem includes only the first time derivative
whereas the Newton equation contains the second (square of time) and hence the equations of motion are reversible in time.
This means that if a system of hard-sphere particles starts a “backward” motion due to the particles reversing their direction
of motion at some instant of time, it passes through all its preceding states up to the initial one, and this will increase the H-
function whose variation is originally governed by reversible equations of motion. The essential point to be made here is
that the observer cannot prefer one of the situations under study, the “forward” motion of the system in time, in favor of the
second situation, its “backward” motion. In other words, the problem of the reversibility of time arises here.

Although somewhat differently formulated, essentially the same objection was made in 1896 by Planck’s student E Zermelo,
who noted that the H-theorem is inconsistent with Poincare’s “recurrence” theorem proved in 1890 and stated that any physical
system, even with irreversible thermodynamic processes operating in it, has a nonzero probability of returning to its original state.
Boltzmann, himself fully aware of this possibility, wrote in the second part of his Lectures on the Theory of Gases (see Ref. [6],
p.251): “Asaresult of the motion of gas molecules, the H-function always decreases. The unidirectional nature of this process does
not follow from the equations of motion, which the molecules obey. Indeed, these equations do not change if time changes sign.”

There is a well-known example from probability theory, which Boltzmann employed as an argument in his discussions—
sometimes very heated ones—with Zermelo, Planck and Ostwald. If a six-sided die is thrown 6000 times, one expects each
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side to turn up about 1000 times. The probability of, say, a six turning up 6000 times in a succession has a vanishing small
value of (1/6)°™, This example does not clear up the matter, however. Nor do the two papers which Boltzmann’s student
P Ehrenfest wrote in co-authorship with T Afanas’eva-Ehrenfest after the death of the great Austrian physicist.

Their first model, reported by Afanas’eva-Ehrenfest at the February 12, 1908 meeting of the Russian Physical-Chemical
Society, involved the application of the H-theorem to the “plane” motion of a gas [7]. Suppose P-molecules, nontransparent
to one another, start moving normally to axis y and travel with the same velocity in the direction of axis x. Suppose further
that in doing so they undergo elastic collisions with Q-particles, squares with sides at an angle of 45° to axis y, which are
nontransparent to the molecules and are all at rest.

Itisreadily shown that shortly after, all the molecules will divide themselves into four groups, and itis a simple matter to write
down the change in the number of molecules P in each group in a certain time At and then to define a “planar-gas™ H -function

4
H= f;Inf, (1.12)
i=1

where f; is the number of molecules of the i-th kind, i.e., of those moving in one of the four possible directions. If all the
velocities reverse their direction, the H-function starts to increase and reverts to the value it had when the P-molecules
started their motion from the y axis. While this simple model confirms the Poincare-Zermelo theorem, it does not at all
guarantee that the H-function will decrease when the far more complicated Boltzmann model is used.

P and T Ehrenfest’s second model [8], known as the lottery’s model, features two boxes, A and B, and N numbered balls
to which there correspond “lottery tickets” placed in a certain box and which are all in box A initially. The balls are then
taken one by one from A and transferred to B according to the number of a lottery ticket, drawn randomly. Importantly, the
ticket is not eliminated after that but rather is returned to the box. In the event that the newly drawn ticket corresponds to a
ball contained in B, the ball is returned to A. As a result, there will be approximately N/2 balls in either box.

Now suppose one of the boxes contains n balls—and the other accordingly N — n balls—at a certain step s in the drawing
process. We can then define 4, a function, which determines the difference in the number of balls between the two boxes:
A=n—(N—n)=2n—N. In “statistical” equilibrium, 4 =0 and n=N/2, the dependence A4(s) will imitate the behavior of
the H-function in a Boltzmann gas.

This example is also not convincing enough because this “lottery” game will necessarily lead to a fluctuation in the 4
function, whereas Boltzmann kinetic theory excludes completely fluctuations in the H-function. By the end of his life
Boltzmann went over to fluctuation theory, in which the decrease of the H-function in time is only treated as the process
the system is most likely to follow. This interpretation, however, is not substantiated by his kinetic theory since the origin of
the primary fluctuation remains unclear (the galactic scale of such fluctuation included).

One of the first physicists to see that Boltzmann equation must be modified in order to remove the existing contradic-
tions was J Maxwell. Maxwell thought highly of the results of Boltzmann, who in his turn did much to promote Maxwell
electrodynamics and its experimental verification.

We may summarize Maxwell’s ideas as follows. The equations of fluid dynamics are a consequence of the Boltzmann
equation. From the energy equation, limiting ourselves to one dimension for the sake of simplicity and neglecting some
energy transfer mechanisms (in particular, convective heat transfer), we obtain the well-known heat conduction equation

o LT

5= (-13)

The fundamental solution of Eqn (1.13) up to the dimensional constant is

1 -5
T(x, t):mexp(—‘m) (1.14)

and represents the temperature at point x at instant ¢ provided at time =0 an amount of heat cp, with p the density and a the
thermal diffusivity of the medium, is evolved at the origin of coordinates. Defining an argument of a function T as 0 =a’t
with the dimension of a coordinate squared we obtain

1 x”-)
T=——-=exp| —==]). (1.15)
270 J ( 40
The temperature distribution given by this equation is unsatisfactory physically. For small values of 6, the temperature
at the heat evolution point x=0 is indefinitely large. On the other hand, at any arbitrarily distant point x the temperature

produced by an instantaneous heat source will be different from zero for arbitrarily small times. While this difference may
be small, it is a point of principal importance that it has a finite value.
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As Landau and Lifshitz noted in their classical Course of Theoretical Physics ([9], p. 283), “The heat conduction process
described by the equations obtained here has the property that any thermal perturbation becomes instantaneously felt over
all space.” This implies an infinitely fast propagation of heat, which is absurd from the point of view of molecular-kinetic
theory. In the courses of mathematical physics this result is usually attributed to the fact that the heat conduction equation is
derived phenomenologically, neglecting the molecular-kinetic mechanism of heat propagation. However, as has been
already noted, the parabolic equation (I.13) follows from the Boltzmann equation. Some of Maxwell’s ideas, phenome-
nological in nature and aimed at the generalization of the Boltzmann equation, are discussed in Woods' monograph [10].

Work on the hyperbolic equation of heat conduction was no longer related directly to the Boltzmann equation but rather
was of a phenomenological nature. Without expanding the details of this approach, we only point out that the idea of the
improvement of Eq. (I.13) was to introduce the second derivative with respect to time thus turning Eq. (I.13) into the hyper-
bolic form

621 ar 32T
or Bt 82’

where 1, is treated as a certain relaxation kinetic parameter with the dimensions of time. For the first time in modern physics
this idea was formulated by B Davydov [11] (see also interesting discussion about priority between C Cattaneo and
P Vernotte [12-15]). The wave equation (I.16) leads to final propagation velocities for a thermal perturbation—although
it should be remarked parenthetically that the quasi-linear parabolic equations may also produce wave solutions.

A breakthrough period in the history of kinetic theory occurred in the late 1930s and early 1940s, when it was shown through
efforts of many scientists—of which Bogolyubov certainly tops the list—how, based on the Liouville equation for the multipar-
ticle distribution function fy of a system of N interacting particles, one can obtain a one-particle representation by introducing a
small parameter & = nv,, where n is the number of particles per unit volume and v, is the interaction volume [ 16-20]. This hierarchy
of equations is usually referred to as the Bogolyubov or BBGKY (Bogolyubov—Born—Green—Kirkwood—Yvon) chain.

We do not present the technical details in Introduction but refer the reader to the classical works cited above or, for
example, to Ref. [21]. Some fundamental points of the problem are worth mentioning here, however.

vy (1.16)

(1) Integrating the Liouville equation

+Zv, +ZF 6f” =0 (L17)

subsequently over phase volumes dQ,.,,. . .,dQy (dQ;=dr;dv;), one obtains a kinetic equation for the s-particle distribution
function, with the distribution function f;,, in the integral part of the corresponding equation.

In other words, the set of integro-differential equations turns out to be a linked one, so that in the lowest-order approxi-
mation the distribution function f; depends on f,. This means formally that, strictly speaking, the solution procedure for such
a set should be as follows. First find the distribution function fy and then solve the set of BBGKY equations subsequently for
decreasingly lower-order distributions. But if we know the function fj, there is no need at all to solve the equations for f; and
it actually suffices to employ the definition of the function

fj=JfN(t$Ql’"'QQN)dQS+]"'dQN' (I.18)

We thus conclude that the rigorous solution to the set of BBGKY equations is again equivalent to solving Liouville equa-

tions. On the other hand, the seemingly illogical solution procedure involving a search for the distribution function f; is of

great significance in kinetic theory and in non-equilibrium statistical mechanics. This approach involves breaking the

BBGKY chain by introducing certain additional assumptions (which have a clear physical meaning, though). These

assumptions are discussed in detail below.

(2) For a non-reacting gas, the Boltzmann equation is valid for two time scales of distribution functions: one of the order of the
mean free time of the particles, and the other the hydrodynamic flow time. The Boltzmann equation is invalid for time lengths
of the order of the collision times. Notice that a change from the time scale to the length scale can of course be made if desired.

(3) After the BBGKY chain is broken and f, represented as a product of one-particle distribution functions (which is quite
reasonable for a rarefied gas), the Boltzmann equation cannot be written in a classical form with only one small
parameter ¢ and it reduces instead to the Vlasov equation in a self-consistent field.

(4) Because the Boltzmann equation does not work at distances of the order of the particle interaction radius (or at the r,
scale), Boltzmann particles are pointlike and structureless, and it is one of the inconsistencies of the Boltzmann theory
that the resulting collision cross sections of the particles enter the theory by the collision integral.
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(5) Usually the one-particle distribution function is normalized to the number of particles per unit volume. For Boltzmann
particles the distribution function is “automatically” normalized to an integer because a point-like particle may only be
either inside or outside a trial contour in a gas — unlike finite-diameter particles which of course may overlap the
boundary of the contour at some instant of time. Another noteworthy point is that the mean free path in Boltzmann
kinetic theory is only meaningful for particles modeled by hard elastic spheres. Other models face difficulties related,
though, to the level of one-particle description employed. The requirement for the transition to a one-particle model is
that molecular chaos should exist prior to a particle collision.

The advent of the BBGKY chain led to the recognition that whatever generalization of Boltzmann kinetic theory is to be
made, the logic to be followed should involve all the elements of the chain, i.e. the Liouville equation, the kinetic equations
for s-particle distribution functions f;, and the hydrodynamic equations. This logical construction was not generally
adhered to.

In 1951, N Slezkin published two papers [22, 23] on the derivation of alternative equations for describing the motion of gas.
The idea was to employ Meshcherskii’s variable-mass point dynamics theory [24], well known for its jet propulsion applications.

The assumption of a variable-mass particle implies that at each point a liquid particle, close to this point and moving
with a velocity v, adds or loses a certain mass, whose absolute velocity vector U differs, as Slezkin puts it, by a certain
appreciable amount from the velocity vector v of the particle itself. Since there are different directions for this mass to
come or go off, the associated mass flux density vector Q is introduced.

By applying the laws of conservation of mass, momentum, and energy in the usual way, Slezkin then proceeds to for-
mulate a set of hydrodynamical equations, of which we will here rewrite the continuity equation for a one-component non-
reacting gas:

gp 0

E"'E([JV‘FQ):O (1-19)

The mass flux density Q is written phenomenologically in terms of the density and temperature gradients.
Thus, the continuity equation is intuitively modified to incorporate a source term giving

o & 0 (.0p 0T
E'Pa'p\'—a'(Dgr"Fﬂ'a—r), (1.20)

where the coefficient D is that of self-diffusion, and f is related to thermal diffusion. Thus, we now have fluctuation terms
on the right-hand side of Eq. (1.20), which are generally proportional to the mean free time 7., and, hence, after Eq. (1.20) is
made dimensionless, to the Knudsen number which is small in the hydrodynamic limit.

At very nearly the time of the publication of Slezkin’s first paper [23], Vallander [25] argued that the standard equations
of motion are ill grounded physically and should therefore be replaced by other equations based on the introduction of
additional mass Q; and energy ¢; fluxes (i=1,2,3) Q;, =D, gr% +D2%, =k grﬂi +k2§r—Ti, where, to quote, “D; is the density
self-diffusion coefficient, D is the thermal self-diffusion coefficient, k; is the density heat conductivity, and k,, the tem-
perature heat conductivity.”

Heuristic and inconsistent with Boltzmann’s theory, the work of Siezkin and Vallander came under sufficiently severe
criticism. Shaposhnikov [26] noted that in these papers, “which are almost identical in content . . . the essential point is that
instead of the conventional expression pv,, additional effects—‘concentration self-diffusion’ and ‘thermal self-
diffusion’—are introduced into the mass flux density which, in addition to the macroscopic mass transfer, cause a molecular
mass transfer, much as the macroscopic energy and momentum transfer in a moving fluid goes in parallel with analogous
molecular transport (heat conduction and viscosity).” Shaposhnikov then proceeds to derive the equation of continuity from
the Boltzmann equation for a one-component gas and shows that the hydrodynamic equations of Siezkin and Vallander are
in conflict with the Boltzmann kinetic theory.

Note that Siezkin and Vallander also modified the equations of motion and energy for a one-component gas in a similar
way (by including self-diffusion effects). Possible consequences of additional mass transfer mechanisms for the Boltzmann
kinetic theory were not analyzed by these authors.

Boltzmann’s “fluctuation hypothesis” was repeatedly addressed by Ya Terletskii (see, for instance, Refs. [27, 28])
whose idea was to estimate fluctuations by using the expression the general theorems of Gibbs (see, for example, Ref.
[29], pp. 85-88) yield for the mean-square deviation of an arbitrary generalized coordinate. To secure that fluctuations
in statistical equilibrium be noticeable, Terletskii modifies the equation of perfect gas state by introducing a gravitational
term, which immediately extends his analysis beyond the Boltzmann kinetic theory leaving the question about the irre-
versible change of the Boltzmann H -function unanswered.
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Some comments concerning terminology should be done. In recent years, possible generalizations of the Boltzmann
equation have been discussed widely in the scientific literature. Since the term ‘“generalized Boltzmann equation”
(GBE) has usually been given to any new modification published, we will only apply this term to the particular kinetic
equation derived by me (for example) in Refs. [30-32] to avoid confusion. The corresponding equation is known also
in the literature as Alexeev equation. Obviously it is not convenient for me to apply this term. Moreover in the following
this kinetic equation will be transformed in the basic equations of the unified theory of transport processes (BEUT) valid in
the tremendous diapason of scales—from the internal structures of so called “elementary particles” to the Universe
expansion. Then GBE is only a particular case of BEUT which can be discussed in the subsequent chapters.

L Woods (see, e.g., Ref. [33]), following ideas dating back to Maxwell [34], introduces in his theory a phenomeno-
logical correction to the substantial first derivative on the left-hand side of the Boltzmann equation to take account of
the further influence of pressure on transport processes. It is argued that the equation of motion of a liquid particle
may be written as v =F + P, where P is a certain additional force, proportional to the pressure gradient: P=— p~'9p/or,
with the result that the left-hand side of the Boltzmann equation becomes

o v (p- 1) 7

Dror " or por) av’
whereas the collisional term remains unchanged. The phenomenological equation (I.21) has no solid foundation and does
not fall into the hierarchy of Bogolyubov kinetic equations.

A weak point of the classical Boltzmann kinetic theory is the way it treats the dynamic properties of interacting particles. On
the one hand, as the so-called “physical” derivation of the BE suggests [1, 6, 35, 36], Boltzmann particles are treated as material
points; on the other hand, the collision integral in the BE brings into existence the cross sections for collisions between particles.
A rigorous approach to the derivation of the kinetic equation for f; (KE;,) is based on the hierarchy of the Bogolyubov—
Born—Green—Kirkwood—Yvon (BBGKY) equations. A KE;, obtained by the multi-scale method turns into the BE if
one ignores the change of the distribution function (DF) over a time of the order of the collision time (or, equivalently, over
a length of the order of the particle interaction radius). It is important to note [30-32] that accounting for the third of the scales
mentioned above has the consequence that, prior to introducing any approximations destined to break the Bogolyubov chain,
additional terms, generally of the same order of magnitude, appear in the BE. If the method of correlation functions is used to
derive KE;, from the BBGKY equations, then a passage to the BE implies the neglect of non-local effects it time and space.
Given the above difficulties of the Boltzmann kinetic theory (BKT), the following clearly interrelated questions arise.

First, what is a physically infinitesimal volume and how does its introduction (and, as a consequence, the unavoidable
smoothing out of the DF) affect the kinetic equation [30]?

And second, how does a systematic account for the proper diameter of the particle in the derivation of the KE;, affect the
Boltzmann equation? As it was mentioned before, we will refer to the corresponding KEy, as the generalized Boltzmann
equation, or GBE.

Accordingly, our purpose in this introduction is first to explain the essence of the physical generalization of the BE and then
to take a look at the specifics of the derivation of the GBE, when (as is the case in plasma physics) the self-consistent field of
forces must of necessity be introduced. As the Boltzmann equation is the centerpiece of the theory of transport processes (TTP),
the introduction of an alternative KE;, leads in fact to an overhaul of the entire theory, including its macroscopic (for example,
hydrodynamic) aspects. Conversely, a change in the macroscopic description will inevitably affect the kinetic level of
description. Because of the complexity of the problem, this interrelation is not always easy to trace when solving a particular
TTP problem. The important point to emphasize is that at issue here is not how to modify the classical equations of physical
kinetics and hydrodynamics to include additional transport mechanisms (in reacting media, for example); rather we face a
situation in which, those involved believe, we must go beyond the classical picture if we wish the revised theory to describe
experiment adequately. The alternative TTPs can be grouped conventionally into the following categories:

(1.21)

(1) theories that modify the macroscopic (hydrodynamic) description and neglect the possible changes of the kinetic
description,

(2) those changing the kinetic description at the KE;, level without bothering much whether these changes are consistent
with the structure of the entire BBGKY chain, and

(3) kinetic and hydrodynamic alternative theories consistent with the BBGKY hierarchy.

One of the pioneering efforts in the first line of research was a paper by Davydov [11], which stimulated a variety of studies
(see, for instance, [37]) on the hyperbolic equation of thermal conductivity. Introducing the second derivative of temperature
with respect to time permitted a passage from the parabolic to the hyperbolic heat conduction equation, thus allowing for a finite
heat propagation velocity. However, already in his 1935 paper B I Davydov points out that his method “cannot be extended to
the three-dimensional case”” and that “here the assumption that all the particles move at the same velocity would separate out a
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five-dimensional manifold from the six-dimensional phase space, suggesting that the problem cannot be limited to the coor-
dinate space alone.” We note, however, that also quasi-linear parabolic equations can produce wave solutions.

Therefore, to hyperbolize the heat conduction equation phenomenologically [13] is not valid unless a rigorous kinetic
justification is given. The hyperbolic heat conduction equation appears when the BE is solved by the Grad method [38]
retaining a term which involves a derivative of the heat flow with respect to time and to which, in the context of the
Chapman-Enskog method, no particular order of approximation can be ascribed. Following its introduction, stable and
high-precision computational schemes were developed for the hyperbolic equation of heat conduction [39], whose appli-
cations included, for example, two-temperature non-local heat conduction models and the study of the telegraph equation as
a paradigm for possible generalized hydrodynamics [37, 40].

Major difficulties arose when the question of existence and uniqueness of solutions of the Navier—Stokes equations was
addressed. O A Ladyzhenskaya has shown for three-dimensional flows that under smooth initial conditions a unique
solution is only possible over a finite time interval. Ladyzhenskaya even introduced a “correction” into the Navier—Stokes
equations in order that its unique solvability could be proved (see discussion in [41]). It turned out that in this case the
viscosity coefficient should be dependent on transverse flow-velocity gradients—with the result that the very idea of intro-
ducing kinetic coefficients should be overhauled.

We shall now turn to approaches in which the KE;, can be changed in a way which is generally inconsistent with the
BBGKY hierarchy. It has been repeatedly pointed out that using a wrong distribution function (DF) for charged particles
may have a catastrophic effect on the macro-parameters of a weakly ionized gas.

Let us have a look at some examples of this. As is well known, the temperature dependence of the density of atoms
ionized in plasma to various degrees was first studied by Saha [42] and Eggert [43]. For a system in thermodynamic equi-
librium they obtained the equation

Nj41Ne = Sj+1 (271”'%-./‘}37‘)3/2 exp ( b ) (1.22)

nj 5y h3

where n;is the number density of j-fold ionized atoms, n is the number density of free electrons, m, is the electron mass, kg is the
Boltzmann constant,  is the Planck constant, s; is the statistical weight for a j-fold ionized atom [44], and ¢; is the jth ionization
potential. The Saha equation (1.22) is derived for the Maxwellian distribution and should necessarily be modified if another
velocity distribution of particles exists in the plasma. This problem was studied in work [45], in which, for illustrative purposes,
the values of n, 1n./n; calculated with the Maxwell distribution function are compared with those obtained with the Druyvesteyn
distribution function, the average energies for both distributions being assumed equal. Let T= 10°K, n, = 10"em 3, g=10eV,
the charge number Z= 1,s;,,/s;=1. Then one arrives at [45]: n;,n./n;=06 X 10? (calculation using the Druyvesteyn distri-
bution), 7, 11e/n;=4.53 x 10'® (calculation using the Maxwellian distribution function by the Saha formula).

As E Dewan explained, “the discrepancy in fourteen orders of magnitude obtained above is clearly due to the fact that,
unlike Maxwellian distribution, the Druyvesteyn distribution does not have a ‘tail’.”

In our second example, two quantities—the ionization rate constant and the ionization cross section—were calculated
by Gryzinski et al. [46] using the two above-mentioned distributions. The ionization cross section g; is defined by the fol-
lowing interpolation formula known to match satisfactorily the experimental data

0;=00Gi(E,¢) /e, (1.23)

where 6o =6.56 x 10~ "*cm?(eV)?, ¢ is the ionization potential of the atom, and ¢ is a dimensionless parameter character-
izing the atomic electron shell:

E=W/e, (1.24)

where W is the average kinetic energy of the atomic electrons, given by the formula
1 &
w :E;gﬁ (125)

in which N, is the number of electrons in the atom, and ¢; are the ionization potentials for the atom successively stripped of
its electrons. The parameter ¢ is defined by the expression

C= Ue/g,-, (1.26)

where U, is the energy of the electrons bombarding the atom. The neutral particle velocities are assumed to be much lower
than the average electron velocity, and the plasma is taken to be uniform. The average value of the ionization cross section is
then given by
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o0

G = | 6i(ve)f (ve)dve, (L27)
0

I

and the ionization rates are evaluated by the formula

oo

;i (ve)vef (ve)dve, (1.28)

o

provided the function G(¢,¢) defined as [46]

(c—1)(1+%/38)
(c+1)(1+&+¢c)”

Gi(¢,¢)= 129 .
is known.

Table 1.1 illustrates the calculated values of 3; and 77v, for ¢ =1 and various T = kg T /&:. It can be seen that the results
obtained with different DFs can differ widely, indeed catastrophically so even for relatively small values of T. Thus, the
reliable computation of DFs remains a topic of intense current interest in plasma physics problems, the weak effect of the
DF form on its moments being rather an exception than the rule. The use of collision cross sections which are
“self-consistent” with kinetic equations is also suggested by the well-known Enskog theory of moderately dense gases
(47). Enskog’s idea was to describe the properties of such gases by separating the non-local part out of the essentially
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local (!) Boltzmann collision integral. The transport coefficients obtained in this way for the hard-sphere model yielded an
incorrect temperature dependence for the system’s kinetic coefficients. To remedy this situation, the model of “soft”
spheres was introduced to fit the experimental data (see, for instance, Ref. [48]).

In the theory of the so-called kinetically consistent difference schemes [49], the DF is expanded in a power series of
time, which corresponds to using an incomplete second approximation in the “physical” derivation of the Boltzmann
equation (see discussion in Refs. [41, 50]). The result is that the difference schemes obtained contain only an artificial
ad hoc viscosity chosen specially for the problem at hand. Some workers followed the steps of Davydov by adding the
term %f/9¢” to the kinetic equations for fast processes.

Bakai and Sigov [51] suggest using such a term in the equation for describing DF fluctuations in turbulent plasma. The
so-called ordering parameter they introduce alters the very type of the equation. To describe spatial non-locality, Bakai and
Sigov complement the kinetic equation by the 8”f/9x” term and higher derivatives, including mixed time-coordinate partial
derivatives—a modification which can possibly describe non-Gaussian random sources in the Langevin equations [52].
Vlasov [53] attempted to eliminate the inconsistencies of the Boltzmann theory through the inclusion of additional
dynamical variables (derivatives of the velocity) in the one-particle distribution function f(r,v,Vv,V,V,...,1).
However—due primarily to the reasonable complexity requirement which should be met for a theory to be useful in
practice—this approach is, in our view, too early to try until all traditional resources for describing the DF are exhausted.
The reader is referred to review [54] of some other theories of transport properties.

Clearly, approaches to the modification of the KE;, must be based on certain principles, and it is appropriate to outline
these in brief here. Of the approaches we have mentioned above, the most consistent one is the third, which clearly reveals
the relation between alternative KEy, ’s and the BBGKY hierarchy. There are general requirements to which the generalized
KE;, must satisfy.

(1) Since the artificial breaking of the BBGKY hierarchy is unavoidable in changing to a one-particle description, the
generalized KE;, should be obtainable with the known methods of the theory of kinetic equations, such as the multi-
scale approach, correlation function method, iterative methods, and so forth, or combinations of them. In each of these,
some specific features of the particular alternative KEy, are highlighted.

(2) There must be an explicit link between the KE;, and the way we introduce the physically infinitesimal volume—and
hence with the way the moments in the reference contour with transparent boundaries fluctuate due to the finite size of
the particles.

(3) In the non-relativistic case, the KE;, must satisfy the Galileo transformation.

(4) The KE;, must ensure a connection with the classical H-theorem and its generalizations.

(5) The KEy, should not lead to unreasonable complexities in the theory.

Although the examples above are purely illustrative and the exhaustive list of difficulties faced by Boltzmann kinetic
theory would of course be much longer, it should be recognized that after the intense debates of the early twentieth century,
the search for an alternative kinetic equation for a one-particle distribution function has gradually leveled off or, perhaps
more precisely, has become of marginal physical importance. Both sides of the dispute have exhausted their arguments. On
the other hand, the Boltzmann equation has proven to be successful in solving a variety of problems, particularly in the
calculation of kinetic coefficients. Thus, the development of Boltzmann kinetic theory has turned out to be typical for
any revolutionary physical theory—from rejection to recognition and further to a kind of “canonization.”

In the latter part of twentieth century two very important results were obtained:

(1) The Irish physicist John Stewart Bell (1928—1990) was to show (Bell’s theorems [55]) that all local statistical theories
of dissipative processes are wrong in principal.

(2) The Russian physicist Boris V Alexeev was to show that the derivation of KE;, from the BBGKY equations (prior to
introducing any approximation destined to break the Bogolyubov chain) leads to additional terms of the non-local
origin, generally of the same order of magnitude, appear in the BE. Then the passage to the BE means the neglect
of non-local effects. These additional terms cannot be omitted even in the limit cases of kinetic theory, therefore
BE is only a plausible equation.

It could be anticipated that we will obtain small corrections to the existing results. But in reality we are in front of the
tremendous catastrophe in modern theoretical physics. Several extremely significant problems challenge modern funda-
mental physics, which can be titled as “Non-solved problems of the fundamental physics” or more precisely of local
physical kinetics of dissipative processes, namely:

(1) Kinetic theory of entropy and the problem of the initial perturbation;
(2) Strict theory of turbulence;
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(3) Quantum non-relativistic and relativistic hydrodynamics, theory of charges separation in the atom structure;
(4) Theory of ball lightning;

(5) Theory of dark matter;

(6) Theory of dark energy, Hubble expansion of the Universe;

(7) The destiny of anti-matter after the Big Bang;

(8) A unified theory of dissipative structures—from atom structure to cosmology.

In appearance these old and new problems (including the problems 5 and 6 in the list) mean that we have reached
the revolutionary situation not only in physics but in natural philosophy on the whole. Practically we are in front of the
new challenge since Newton’s Mathematical Principles of Natural Philosophy was first published in 1687. It’s impos-
sible to believe that in more that three hundred years after Newton we have the following diagram obtained in
astrophysics:

Dark energy Everything else, Dark matter

including all stars,

planets, and us

As result we have the Internet reaction like that: It is humbling, perhaps even humiliating, that we know aimost nothing
about 96% of what is "out there"!! But this situation is not so bad on its own. We have the worst case from position of local
physics—dark matter and dark energy cannot be diagnosed by the known experimental methods. WHERE IS THE MAIN
MISTAKE?

The origin of difficulties consists in the total oversimplification following from the principles of local physics and
reflects the general shortcomings of the local kinetic transport theory.

Let us consider the fundamental methodic aspects of non-local physics from the qualitative standpoint, avoiding exces-
sively cumbersome formulas.

Transport processes in open dissipative systems are considered in physical kinetics. Therefore, the kinetic description is
inevitably related to the system diagnostics. Such an element of diagnostics in the case of theoretical description in physical
kinetics is the concept of the physically infinitely small volume (PhSV). The correlation between theoretical description
and system diagnostics is well known in physics. Suffice it to recall the part played by test charge in electrostatics or by test
circuit in the physics of magnetic phenomena.

The traditional definition of PhSV contains the statement to the effect that the PhSV contains a sufficient number of
particles for introducing a statistical description; however, at the same time, the PhSV is much smaller than the volume V of
the physical system under consideration.
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In a first approximation, this leads to local approach in investigating the transport processes. It is assumed in classical
hydrodynamics that local thermodynamic equilibrium is first established within the PhSV, and only after that the transition
occurs to global thermodynamic equilibrium if it is at all possible for the system under study.

Let us consider the hydrodynamic description in more detail from this point of view. Assume that we have two neigh-
boring physically infinitely small volumes PhSV; and PhSV, in a non-equilibrium system. The one-particle distribution
function (DF) fim 1(r, v, 1) corresponds to the volume PhSV,, and the function fy, 2(r, v,#)—to the volume PhSV,. It is
assumed in a first approximation that f, 1(r;,v,7) does not vary within PhSV, same as f;;, 2(r2, v,7) does not vary within
the neighboring volume PhSV,. It is this assumption of locality that is implicitly contained in the Boltzmann equation (BE).
However, the assumption is too crude.

Indeed, a particle on the boundary between two volumes, which experienced the last collision in PhSV, and moves
toward PhSV,, introduces information about the f, ;(ry,v,f) into the neighboring volume PhSV,. Similarly, a particle
on the boundary between two volumes, which experienced the last collision in PhSV, and moves toward PhSV, introduces
information about the DF f, »(r,,v,?) into the neighboring volume PhSV,. The relaxation over translational degrees of
freedom of particles of like masses occurs during several collisions. As a result, “Knudsen layers™ are formed on the
boundary between neighboring physically infinitely small volumes, the characteristic dimension of which is of the order
of path length.

Then a correction must be introduced into the DF in the PhSV, which is proportional to the mean time between collisions
and to the substantive derivative of the DF being measured. Rigorous derivation is given for example in [21, 30-32, 56, 57].

Let a particle of finite radius be characterized as before by the position r at the instant of time ¢ of its center of mass
moving at velocity v. Then, the situation is possible where, at some instant of time ¢, the particle is located on the interface
between two volumes. In so doing, the lead effect is possible (say, for PhSV,), when the center of mass of particle moving to
the neighboring volume PhSV, is still in PhSV,. However, the delay effect takes place as well, when the center of mass of
particle moving to the neighboring volume (say, PhSV,) is already located in PhSV; but a part of the particle still belongs to
PhSV,.

Moreover, even the point-like particles (starting after the last collision near the boundary between two mentioned volumes) can
change the distribution functions in the neighboring volume. Adjusting of the particles dynamic characteristics for translational
degrees of freedom takes several collisions. Therefore we experience a “Knudsen layer” effect between adjacent small volumes.
This leads to fluctuations in mass and hence also in other hydrodynamic quantities. The existence of such “Knudsen layers” is not
dependent on the choice of spatial nets and is fully defined by the reduced description for ensemble of particles of finite diameters in
the conceptual framework of open physically small volumes, i.e., it depends on the chosen method of measurement.

THE MAIN MISTAKE OF LOCAL PHYSICAL KINETICS CAN BE INDICATED AS FOLLOWS:

This entire complex of the mentioned effects defines non-local effects in space and time. The physically infinitely small
volume (PhSV) is an open thermodynamic system for any division of macroscopic system by a set of PhSVs.

However, the Boltzmann equation (BE) fully ignores non-local effects and contains only the local collision integral o
The foregoing non-local effects are insignificant only in equilibrium systems, where the kinetic approach changes to
methods of statistical mechanics.

This is what the difficulties of classical Boltzmann physical kinetics arise from. The rigorous approach to derivation of
kinetic equation relative to one-particle DF f (KEy) is based on employing the hierarchy of Bogoliubov equations. Low
index “1” is omitted if it cannot lead to misunderstandings. Generally speaking, the structure of KEis as follows

Df

= =JB 4™, (1.30)

where J™ is the non-local integral term.
An approximation for the second collision integral is suggested by me in generalized Boltzmann physical kinetics,

m_D( Df
r== (‘r Dt), (131)

7 is non-local parameter (coinciding in a gas with the relaxation time t, proportional to the mean time t,,, between
collisions of particles); 7., is related in a hydrodynamic approximation with dynamical viscosity u and pressure p,

TP = T L, (1.32)

where the factor I1 is defined by the model of collision of particles; for neutral hard-sphere gas, [1=0.8, [35, 36]. Obviously
in “the simplest version” 7., can be used in (I.31) instead of 7; it leads only to variety of Il-parameter in (1.32).



xviii Historical Introduction and the Problem Formulation

All of the known methods of deriving kinetic equation relative to one-particle DF f lead to the approximation (I.31),
including the method of many scales, the method of correlation functions, and the iteration method.

We are faced in fact with the “price-quality” problem familiar from economics. That is, what price—in terms of the
increased complexity of the kinetic equation—are we ready to pay for the improved quality of the theory? An answer to this
question is possible only through experience with practical problems.

Extremely important:

D/ D
1. Approximation J™ = — (TE{) delivers local approximation of non-local collision integrals.

Dt
. 1l D/ Df on :
2. Approximation J" = Dr ‘L’E return us to two level description (level of hydrodynamic processes+level of transport

processes between collisions).
3. The generalized transport theory is not too complicated in applications.

One can draw an analogy with the Bhatnagar-Gross-Krook (BGK) approximation for local integral /%,

O —f

Tr

= (1.33)
(in the simplest case 7, ~ 7) the popularity of which in the case of Boltzmann collision integral is explained by the colossal
simplification attained when using this approximation. The order of magnitude of the ratio between the second and first
terms of the right-hand part of Eq. (1.30) is Kn?, at high values of Knudsen number, these terms come to be of the same
order. It would seem that, at low values of Knudsen number corresponding to hydrodynamic description, the contribution
by the second term of the right-hand part of Eq. (1.30) could be ignored.

However, this is not the case. Upon transition to hydrodynamic approximation (following the multiplication of the
kinetic equation by invariants collision and subsequent integration with respect to velocities), the Boltzmann integral part
goes to zero, and the second term of the right-hand part of Eq. (1.30) does not go to zero after this integration and produces a
contribution of the same order in the case of generalized Navier-Stokes description.

From the mathematical standpoint, disregarding the term containing a small parameter with higher derivative is imper-
missible. From the physical standpoint, the arising additional terms proportional to viscosity correspond to Kolmogorov
small-scale turbulence; the fluctuations are tabulated. It turns out that the integral term J™ is important from the standpoint
of the theory of transport processes at both low and high values of Knudsen number.

Note the treatment of GBE from the standpoint of fluctuation theory,

Df?/De=J", (1.34)
f*=f—1Df/Du. (1.35)

Equations (I.34) and (1.35) have a correct free-molecule limit. Therefore, TDf/Dt is a fluctuation of distribution function,
and the notation (1.34) disregarding (I.35) renders the BE open. From the standpoint of fluctuation theory, Boltzmann
employed the simplest closing procedure

fi=f. (1.36)

Fluctuation effects occur in any open thermodynamic system bounded by a control surface transparent to particles.
Obviously the mentioned non-local effects can be discussed from viewpoint of breaking of the Bell’s inequalities because
in the non-local theory the measurement (realized in PhSV,) has influence on the measurement realized in the adjoining
space-time point in PhSV, and vice-versa.

The equation (GBE) reads

Df 5 D/ Df
—=J"+={1=]). :
Dr Dr (T D1 (-3

Here 7 is non-local parameter, in the simplest case it is the mean time BETWEEN collisions (for plasma t is mean time
between close collisions), for plasma in D/Dt should be introduced the self consistent force F. It is interesting to note that the

GBE also makes it possible to include higher derivatives of the DF (see the approximation (5.8) in Ref. [32]). For a multi
species reacting gas, the generalized Boltzmann equation can be rewritten as
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Df, D Df, B.el , sB.r
_—— = N L I_
Dt Dt (” Dt ) T e a-38)

where f, is distribution function for a particle of the « th kind, 7, is non-local parameter for « species (in the simplest case z,,
is mean free time for a particle of the o th kind), and JB<! B are the Boltzmann collision integrals for elastic and inelastic
collisions, respectively. GBE (I.37) was derived in the theory of liquids, in this case 7 is connected with the time of the
particle residence in the Frenkel cell.

By the way derived by me GBE was presented in my lectures on physical kinetics given in Sophia University, Bulgaria,
in the year 1987; the last monographs in Russian [58, 59].

Let us consider now some aspects of GBE application beginning with hydrodynamic aspects of the theory. Therefore, in
the first approximation, fluctuations will be proportional to the mean free path A (or, equivalently, to the mean time between
the collisions). We can state that the number of particles in reference volume is proportional to cube of the character length
L of volume, the number of particles in the surface layer is proportional to AL?, and as result all effect of fluctuation can be
estimated as ratio of two mentioned values or as A/L =Kn.

The important methodical question to be considered is how classical conservation laws fit into the GBE picture. Con-
tinuum mechanics conservation laws are derived on the macroscopic level by considering a certain reference volume within
the medium, which is enclosed by an infinitesimally thin surface. Moving material points (gas particles) can be either within
or outside the volume, and it is by writing down the corresponding balance equations for mass, momentum flux, and energy
that the classical equations of continuity, motion, and energy are obtained.

Obviously the hydrodynamic equations will explicitly involve fluctuations proportional to t. For example, the conti-
nuity equation changes its form and will contain terms proportional to viscosity. On the other hand, if the reference volume
extends over the whole cavity with the hard walls, then the classical conservation laws should be obeyed.

However, we will here attempt to “guess” the structure of the generalized continuity equation using the arguments out-
lined above. Neglecting fluctuations, the continuity equation should have the classical form with

p°=p—p"=p—1A, (pvo)* =pvo— (p¥)" =pvo — B, (1.39)

where p is density and v, is hydrodynamic velocity. Strictly speaking, the factors A and B can be obtained from the gen-
eralized kinetic equation, in our case, from the GBE. Still, we can guess their form without appeal to the KE.
Indeed, let us write the generalized continuity equation

gt(p—rA)+ %-(pvo—rB) =0 (1.40)
in the dimensionless form, using /, the distance from the reference contour to the hard wall (see Fig. I.1), as a length scale.

Then, instead of 7, the (already dimensionless) quantities A and B will have the Knudsen number Kn;= //! as a coefficient.
In the limit / — 0, Kn; — oo the contour embraces the entire cavity contained within hard walls, and there are no fluctuations on
the walls. In other words, the classical equations of continuity and motion must be satisfied at the wall. Using hydrodynamic
terminology, we note that the conditions A=0, B=0 correspond to a laminar sub-layer in a turbulent flow.

Now if a local Maxwellian distribution is assumed, then the generalized equation of continuity in the Euler approxi-
mation is written as

FIG. 1.1 Closed cavity and the reference contour containing particles of a finite diameter.



