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Advanced Solid State Physics
Second Edition

A

Providing an up-to-date and lucid presentation of phenomena across modern advanced-level
solid state physics, this new edition builds on an elementary understanding to introduce
students to the key research topics with the minimum of mathematics. It covers cutting-edge
topics, including electron transport and magnetism in solids. It is the first book to explain
topological insulators and strongly correlated electrons.

Explaining solid state physics in a clear and detailed way, it also has over 50 exercises for
students to test their knowledge. In addition to the extensive discussion of magnetic impurity
problems, bosonization, quantum phase transitions, and disordered systems from the first
edition, the new edition includes such topics as topological insulators, high-temperature
superconductivity and Mott insulators, renormalization group for Fermi liquids, sponta-
neous symmetry breaking, zero and finite-temperature Green functions, and the Kubo
formalism.

Philip Phillips is Professor of Physics at the University of lllinois. As a theoretical condensed
matter physicist he has an international reputation for his work on transport in disordered
and strongly correlated low-dimensional systems.

Cover illustration: phase diagram of the disordered quantum XY model. The arrows in-
dicate the phase of the Cooper pairs (balls with springs). The yellow region represents a
superconductor, the darker blue a glassy phase, and the lighter blue a phase-disordered
insulator. The vertical axis represents the temperature while the in-plane axes represent the
disorder and magnetic field strengths.
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“The scientists of today think deeply instead of clearly. One must be sane to think clearly,
but one can think deeply and be quite insane.”
Nikola Tesla, July 1934.
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In writing the second edition of this text, I have tried to accomplish three things. First,
correct all the typos in the first edition. This has turned out to be somewhat harder than I
had anticipated. While I am certain my proofreaders and I corrected all mistakes we could
find, that might not have been sufficient. As there will undoubtedly be a second printing,
simply email me any errors you might find at dimer@illinois.edu. Second, include all the
material that should have been in the first edition but that I had given up on writing. This
includes Green functions, Luttinger’s theorem, renormalization of short-range interactions
for Fermi liquids, and symmetry. In keeping with this being a physics rather than a technique
or mathematics tract, these subjects are interwoven wherever they are first needed. For
example, the section on Green functions is in Chapter 7 where the Anderson impurity
problem is treated. For completeness, Luttinger’s theorem is also presented in the same
chapter but in an appendix. Third, include new material that reflects the fast-moving pace
of i = 1 research in condensed matter physics. Here | made a judgement based on what |
anticipate students would find most useful. Since there are no texts that present the pedagogy
of topological insulators (though some excellent review articles exist) and Mott insulators,
I chose to focus on those topics. In writing the topological insulator section, I have tried
to stick to the formulations that require the fewest definitions and new concepts since
the physics of these systems is inherently simple. Regarding the Mott problem, I present
what I think is non-controversial but not written down anywhere in a single manuscript.
Chapter 16 starts with the band insulator in which the rigid-band picture is valid and then
demonstrates that the physics of the Mott problem stands apart because no such rigid-band
picture applies. While tomes have been written about rigid-band models, no text deals
with the breakdown of the rigid-band picture in strongly correlated electron problems. The
cuprate problem is discussed in this context. 1 had also intended to write a chapter on
quantum computing and extend the discussion in Chapter 14 to include the Bose—Hubbard
model. However, including such topics would have pushed the page count well over 600
pages, thereby making the book unwieldy. Further, such topics are not, in my estimation,
particularly suited to a core second-semester graduate class but rather to a more specialized
course. Perhaps I will think differently in a few years.

[ have benefitted from much input in the final editing of the current manuscript. Babak
Seradjeh, Juan Jottar, and Taylor Hughes offered invaluable critiques of the topological
insulator section. Wei-Cheng Lee, Mohammad Edalati, and Taylor Hughes also read the
Mott chapter and caught several typos and inaccuracies. I also thank Mohammad for reading
and correcting the chapter on symmetries and Robert Leigh for his characteristically level-
headed and incisive remarks on strong coupling physics and symmetry. Wade deGottardi
offered numerous suggestions on the bosonization chapter. While I received emails from
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several students around the world detailing the typographical errors they have caught, I
would especially like to thank Wei Han who found two key typos in two figures from the
first edition. Many thanks to Taylor Hughes for redrawing these figures. The duty of proof-
reading fell on my research group and other members of the ICMT group at Urbana whose
arms are still recovering from the non-adiabatic distortions I applied to them. These include
Wei-Cheng Lee, Mohammad Edalati, Seungmin Hong, Wade deGottardi, Rodrigo Garrido,
and Kiaran Dave. In addition, at the proof stage, Kiaran Dave, Ka Wai Lo, and Huihuo
Zheng read the entire manuscript and corrected it assiduously, in their relentless drive to
eliminate all typographical errors. I would like to thank Matthew Feickert for converting the
LaTeX files to the Cambridge style and for spotting several typographical errors along the
way, and the Cambridge staff, Mike Nugent, Simon Capelin, Claire Poole, Abigail Jones
and Frances Nex for their dedication to this project. Early influences without which this
book might not have been possible include my high school English teacher, Duane Kusler,
who encouraged me to write and my twin sisters Andi and Lyndi from whom I learned
many math tricks. My endearing thanks go to my family for their support and calming
presence.
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Introduction

Solid state physics grew out of applications of quantum mechanics to the problem of electron
conduction in solids. This seemingly simple problem defied solution because the presence
of an ion at each lattice site seemed to present an obvious impediment to conduction.
How the electrons avoid the ions was thus the basic question. Although the answer to this
question is well known, it does serve to illuminate the very essence of solid state physics:
there is organization in the many. Each electron adjusts its wavelength to take advantage of
the periodicity of the lattice. In the absence of impurities, conduction is perfect. Hence, by
understanding this simple fact that periodicity implies perfect conduction, it became clear
that the experimentally observed resistivity in a metal came not from electrons running
into each of the ions but rather from dirt (disorder), thermal effects mediated by dynamical
motion of the ions, or electron—electron interactions. This book examines each of these
effects with an eye for identifying underlying organizing principles that simplify the physics
of such interactions.

1.1 Spontaneously broken symmetry

The search for organizing principles that help simplify the physics of many-body systems
is at the heart of modern solid state or, more generally, condensed matter physics. One such
tool is symmetry. Consider the simple case of permutation symmetry typically taught in a
first class in quantum mechanics. This symmetry was introduced into quantum mechanics by
W. Heisenberg in the context of the indistinguishability of identical particles. The permuta-
tion group has a finite number of elements and hence is associated with a discrete symmetry.
Permutation symmetry allows us to classify fundamental particles into two groups. Bosons
are even with respect to interchange of two particles and fermions odd. This symmetry can
be generalized to include a non-integer phase when two particles are interchanged, as we
will see in the context of the fractional quantum Hall effect.

To a large extent, the symmetries that are most relevant in condensed matter systems are
typically continuous, for example rotational symmetry. Spontaneously breaking a continu-
ous symmetry has a fundamental consequence. For example, the existence of phonons in
a solid or spin waves in a magnet follows from the spontaneous breaking of a continuous
symmetry. By spontaneous, we mean without the application of an external field. A periodic
arrangement of ions in a crystal breaks continuous translational and rotational symmetry.
Such spontaneous breaking of a continuous symmetry by the very existence of the lattice
is necessarily accompanied by a massless spinless bosonic excitation. That such massless
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spinless bosons, known as Nambu-Goldstone bosons (G1961; N1960), necessarily accom-
pany the breaking of a continuous symmetry can easily be deduced from the following
considerations. We consider a system with a Lagrangian

L=T-V(@¢), (L)

consisting of a kinetic energy, 7', and a potential energy, V' (¢), where we are allowing for
¢ to be a complex function. The claim that such a system is invariant under a symmetry
operation is captured by

Vig) =V(p+e€d). (1.2)

where €8¢ is the generator of the symmetry operation. Here € is an infinitesimal. We have
assumed for the moment that §¢ is independent of space. To illustrate what is meant by
this identity, consider a potential of the form ¥ (¢) = €|¢|*. This potential is invariant
under transformations of the form ¢ — ¢e®. Let 6 be a small quantity completely inde-
pendent of space. Then we can expand the exponential and retain only the first-order term.
Consequently, ¢ — ¢ (1 + i6) and we identify e8¢ as i6¢; that is, € = 6 and §¢ = i¢.
This symmetry, known as U(1), is present in models that preserve charge conservation.
Expansion of V' (¢) to linear order in € implies that

sV
5¢'87ﬁ' =0, (13)

assuming that the symmetry is intact. Now assume explicitly that the symmetry is broken
such that V' — V(¢y + x), where ¢y minimizes the potential and x cannot be written as
a generator of a symmetry operation as in Eq. (1.2). Since the potential has a minimum, it
makes sense to expand

1, 0%V
V(¢0+X)=V(¢())+§X Fyel
¢ p=c¢q
truncating at the restoring term at second order. The second term, which can be used to
define the mass (m) in a standard harmonic expansion, is inherently positive semi-definite

since we have expanded about the minimum. With this equation in hand, we differentiate
Eq. (1.3),

1,
= V(o) + Ex‘mz. (1.4)

aspsy PV
3¢ 8¢ 992

with respect to ¢. The first term vanishes when evaluated at the minimum, implying that

+ 8¢ 0, f1.5)

atv

3
?

=0 (1.6)



1.1 Spontaneously broken symmetry

must identically vanish for any variation of ¢ in the broken symmetry state. Since 8¢ is
non-zero, Eq. (1.6) is satisfied only if the second-order-derivative term vanishes or equiv-
alently if m*> = 0. That is, the mass vanishes. This is Goldstone’s theorem (G1961). A
zero mode exists for each generator of a continuously broken symmetry. As a result of this
theorem, symmetry occupies a central place in all areas of physics, in particular particle and
condensed matter physics. Typically, the massless bosons that arise in condensed matter
systems represent collective excitations of the entire many-body system. In fluids, phonons
are purely longitudinal and arise from spontaneous breaking of Galilean invariance. In
solids, phonons are both transverse and longitudinal, though with no simple correspon-
dence with the spontaneous breaking of Galilean, translational, and rotational symmetry.
In magnets, spin waves or magnons are the collective gapless excitations that emerge from
the spontaneous breaking of rotational symmetry.

We can of course relax the constraint that & be independent of space. In so doing,
we can entertain what happens under local rather than global (¢ independent of space)
transformations. While our analysis on the potential energy remains the same, the kinetic
energy,

1 1
T = 5(3,0")@"¢) + 5|¢|2(au9(x))2, (1.7)

does acquire a new term describing the spatial variation of the phase. If the U(1) symmetry
is not broken by this transformation, then the second term must vanish. Demanding that

3,0 =0 (1.8)

requires that 6 be spatially homogeneous for the symmetry to be preserved. As a result, a
consequence of breaking the continuous U(1) symmetry is that & must be spatially non-
uniform. This is the situation in a superconductor. In fact, the current inside a superconductor
arises entirely from the spatial variation of the phase, as can be seen from the quantum
mechanical equation for the current,

. eh e*h
Ju= ;Imwfauw = —’;IAle,‘O, (1.9

if we interpret ¥ as the wavefunction for the superconducting state; that is, ¥ = Ae'’. We
will see in the chapter on superconductivity precisely how this state of affairs arises. We will
interpret ¥ as the order parameter of a superconducting state. While the Bardeen—Cooper—
Schrieffer (BCS) theory of superconductivity was certainly not formulated as an example
of a broken continuous symmetry, this is the basic principle that underlies this theory. In
fact, the key ingredients of superconductivity, charge 2e carriers and a supercurrent, all
follow from breaking U(1) symmetry.

Massless bosons that emerge from broken symmetry typically generate new unexpected
physics. For example, phonons mediate pairing between electrons, thereby driving the onset
of superconductivity in metals such as Hg and more complicated systems, for example
MgB,. However, strict rules determine how such Nambu—Goldstone bosons can affect
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any system. As shown by Adler (A1965), the interactions induced by massless bosons
arising from the breaking of a continuous symmetry must be proportional to the transferred
momentum. More formally, interactions mediated by the exchange of a Nambu—Goldstone
boson can only obtain through derivative couplings. Consequently, the interaction vanishes
for zero exchanged momentum. This principle implies that the electron—phonon interaction
which mediates pairing in elemental superconductors is inherently dynamical in nature. We
will verify this important principle in the context of the electron—phonon coupling through
an explicit derivation. Hence, entirely from the existence of a lattice, phonons and the kinds
of interactions they mediate can be easily deduced.

1.2 Tracking broken symmetry: order parameter

The idea of an order parameter is another powerful concept in condensed matter physics.
Order parameters track broken symmetry. That is, they are non-zero in the broken symmetry
phase and zero otherwise. Consider a ferromagnet. Locally each spin can point along any
direction. This is the case at high temperature in which no symmetry is broken. In a phase
transition controlled by thermal fluctuations, typically it is the high-temperature phase
that has the higher symmetry. To quantify the order in a collection of spins, we sum the
z-component of each of the spin operators,

M:%Z(S;'), (1.10)
1

scaled by the number of spins, N. Here S7 is the z-component of the spin of the atom on
site 7 and the angle brackets indicate a thermal average over the states of the system. M is
the magnetization. At high temperature before any symmetry is broken, the magnetization
is identically zero. At sufficiently low temperatures, the spins order and the magnetization
acquires a non-zero value. Consider iron for which the Curie or ordering temperature is
1340 K. It turns out that most parts of a block of iron below the magnetization temperature
have vanishing magnetization. This state of affairs obtains because the magnetization is
in general a function of space. As a result, a block of iron does not break the symmetry
uniformly. In fact, the actual magnetization in bulk magnets is not acquired spontaneously
but rather by some external means to align all of the individual magnetic domains. At the
boundary of a domain, the magnetization changes sign, creating a domain wall. Typical
domain sizes in iron are roughly 300 ions. Placing a chunk of Fe in a magnetic field will
orient all of the domains in the same direction, a state of affairs that will persist long after the
field is turned off. This is important since the re-oriented domain state does not constitute
a minimum energy state of the system. The domains lock into place by becoming pinned
to defects. One would expect then that as the magnetizing field is varied, the magnetization
would not change continuously but by discontinuous jumps as domain walls de-pin from
defects. This is the essence of the Barkhaussen effect, the tiny discontinuous jumps the
magnetization makes in the presence of an external magnetic field and ultimately the reason
why the magnetization curve in a ferromagnet exhibits hysteresis as depicted in Fig. 1.1.



