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Preface

As one of the cornerstones of statistics, regression analysis (especially linear
regression analysis) has been playing a significant role in both theoretical research
and real-world data analysis for more than one hundred years after Sir Francis
Galton invented the term “regression” when he was investigating the relationship
between a child and his/her parents. Even in nowadays, this oldest subject still
attracts remarkable attentions and interests from active researchers in related areas
so that a multitude of relevant academic journals have been publishing countless
research papers, not to mention the immense number of efforts made by data ana-
lysts using regression analysis techniques from almost all disciplines in the world,
including economics, finance, biology, medicine science, healthcare, to name just a
few.

This book grows out of the courses we have taught in East China Normal
University in the past several years. The most of the students attending those
courses majored in statistics and the others are from certain related subjects such
as mathematics, economical statistics, financial engineering and insurance and ac-
tuarial science.

This book consists of eight Chapters structured as what follows.

(1) The first two Chapters are for preliminaries providing what are believed
to form the least required set of preparations on matrix algebra that are generally
not taught in the ordinary course under the title “Advanced Algebra” or “Linear
Algebra”, but are necessary for the deduction of some of linear regression theory,
and multivariate normal distributions, which are fundamental for developing the
distributional theory and the hypothesis tests in linear regression. We would like
to note that, these chapters don’t provide sufficient preliminaries in matrices and
in order to smoothly go through this book, it is necessary for one to be well trained
in linear algebra. Certainly, readers who have got well trained in matrix theory
and multivariate normal distributions can simply skip these two chapters.

(2) Chapter 3 is an introduction to the conception of regression models, in
which a regression function is interpreted as both conditional expectation given

the explanatory variables and linear projection on the space consisting of linear
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combinations of the explanatory variables.

(3) The next two chapters are the core parts of this book treating the classical
theory on estimation and hypothesis tests in linear regression analysis. Chapter 4
develops the least square estimates, their properties, least square estimates under
linear restrictions, generalized LS estimates, and collinearity among explanatory
variables. In order to understand Section 4.7, the reader is required to know
the basic elements of Bayesian analysis such as loss function, Bayesian risk and
Bayesian estimation. Chapter 5 is dedicated to the theory of hypothesis test for
linear hypotheses, its parallel theory of confidence regions and a direct application
of linear hypothesis test: goodness-of-fit test. Multiple tests for a set of hypotheses
are also discussed. Prediction and calibration regions are also discussed in this
chapter. Some related quantities such as multiple correlation coefficients and ad-
justed multiple correlation coefficeints are introduced in this chapter. Moreover,
the techniques for analysis of variance are also discussed. Preceding knowledgy on
hypothesis test, including significance level, critical value, power, (noncentroal) x?,
(noncentroal)t- and (noncentroal) F-distribution are required.

(4) Chapter 6 is mainly on variable selection and Chapter 7 provides some
miscellaneous topics in linear regression models. In Chapter 6, we introduce a few
classical methodologies as well as some newly developed techniques developed for
variable selection. While most of the assertions on those classical methodologies are
proved, some (especially the proofs involving the theory of asymptotic statistics)
are not necessary for understanding the rest of the book. Chapter 7 presents some
more interesting topics including collinearity, outliers, testing for heteroskedasticity
of errors and two extensions of linear regression models.

(5) Chapter 8 is a separated one that provides a concise and application-
oriented introduction on logistic regression models which provide a technique for
data analysis when the response is categorical data (binary, multinomial and ordinal
data). Because it is application-oriented, the rigor in theory is to some extent not
considered very much carefully.

It has long been a consensus that statistics is made of two aspects: science and
art. This book puts more focus on the theoretical aspects of regression (the aspect
of science) than introduction of a set of data analysis methodologies for regression

(the art aspect). The computation involved is recommended to be carried out by
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means of softwares for statistics. Thus, we provided SAS code for the examples
so that the students can learn from it how to use SAS to produce the numerical
results of the data under analysis. Besides, a significant feature of this book is
that, in theoretical deduction, we also do our best to provide why we deduce as
that way, with the attempt to make students know both how and why.

The content of this book may be more than what is needed for a course of
3-4 hours a week. According to our experience in the past years, in a course of
3 hours a week we can taught the first 5 Chapters or 6 Chapters, depending on
how the students are trained at the theory and skills of matrix and probability.
In addition, there are some contents (sections, subsections or proofs) that are not
required for following parts and can be skipped at the first reading. These contents
are labelled with the symbol *.

Finally, we are thankful to the Department of Statistics and Actuarial Science
of East China Norrnal University for her kind teaching assignment, so that we have
a chance to teach the courses under the name Regression Analysis for many rounds.
Many thanks would also be given to the students who have attended the courses

in the past years.

Wu Ping and Wu Xianyi
February, 2016
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Chapter 1

Preliminaries: Matrix Algebra

and Random Vectors

1.1 Preliminary matrix algebra

This section prepares the necessary preliminaries for matrix algebra for
later use in this book. For comprehensive resources in matrix algebra for
statisticians, one can be referred to, e.g., the books Graybill (1983) or Seber
(2008).

1.1.1 Trace and eigenvalues

Trace of a square matrix is the sum of the diagonal entries, i.e., tr(A,x,) =
>r_, ai;. A number (possibly complex) A is an eigenvalue of a matrix A if there
exists some nonzero complex n-vector & such that Ax = Az. Throughout the
book, for any matrix operation, it is implicitly assumed that the matrices are

conformable (i.e., dimensions involved are suitable for defining the operations).
Proposition 1.1 (1) tr(A + B) = tr(A) + tr(B).

(2) tr(AmxnBrxm) = tr(BA).

(3) The nonzero eigenvalues of AB are the same as those of BA. Thus,

if A and hence B are square, then eigenvalues of AB and BA are identical.

Proof. (2)

m

tr(AmxnBnxm) = Z(AB)ii = Z Z aijbj; = Z Z bjia;j
i=1 j=1

i=1 j=1 i=1

= i(BA)jj — tr(BA).
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(3) Let A # 0 and ABx = Az for some z #0 —> Bz # 0 and BABzx =
ABz. If A and B are square matrices. AB has an eigenvalue 0 means that
AB is singular. Hence, so is BA, implying that B A has an eigenvalue 0. m

Remark 1.1 For Proposition 1.1, we note that there exist many couples of
matrices A and B such that AB has the eigenvalue 0 but BA has not. For
ezample, if A’ = B = ( I, 0O ), where I}, is the identity matriz of order
I
0

holds generally for the case A ,xn(n < m) is of full column rank and B,y 1S
of full row rank n.

0
k. Then AB = ( " ) has an eigenvalue 0 but BA = I has not. This

Proposition 1.2 Let A,x, be a square matriz with n eigenvalues \;,t =
1,2,--- ,n. Then

tr(A) =Y A and det(4) =[] N,
i=1 i=1
where det means the determinant.

1, ifi=j,

Proof. Write §;; = { for the indicator of {i = j}. Check the

0, otherwise
eigenpolynomial

F(A) = det(M,, — A)
= det(ézj)\ = ai]-)an

= Y (=1 (M, —a1,) - (Ang, — anj)
J1#Je#Fln

(where * is an appropriately defined positive integer)
=T -»)
1=1
= A" — (ZA) A (D) ] (1.1.1)
i=1 g=1

Expanding det(\I,,— A), the term including A"~ ! exists only in (A—ay1) - - - (A—
ann) and thus Y7 A = S ai = tr(A).
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The second assertion follows from again the identity in (1.1.1) by setting
A =0, i.e., the relationship f(0) = (—=1)"det(A) = (=1)" [, A ]

1.1.2 Symmetric matrices

Proposition 1.3 Let A,x, be a symmetric matriz of real numbers. Then:

(1) The eigenvalues of A are also real numbers and for each eigenvalue
we can have an eigenvector of real numbers.

(2) Any two eigenvectors of two different eigenvalues are orthogonal.

(3) The matriz A has n real eigenvalues, writing A\, Ao, ;A\, and n
eigenvectors that can be orthogonalized.

(4) As a result, for any symmetric matriz, there is an orthogonal matriz
P such that

A1
A=P P < PpAP, (1.1.2)
An

which is usually referred to as a spectral decomposition of A.
A
(5) For any integer s > 0, A* = P P ¥ pAsP 50
X

that tr(A®) =Y A

(6) A is nonsingular if and only if \; # 0 for all i. And the eigenvalues
of A=t are \]1,i=1,2,:-- ,m.

(7) The eigenvalues of (I, + cA) are 1 +cX;,i =1,2,--- ,n.

(8) The eigenvalues of a positive semidefinite (p.s.d.) matriz are nonneg-
ative; as a straightforward result, A is a p.s.d. matriz then tr(A) > 0.

Proof. (1) Let A be an eigenvalue of A. Then, there is an n-vector  (maybe
complex) such that Az = Ax. Taking the conjugate operation, we see that
AZ = )&, i.e., AT = \&@. Hence ' AZ = Az'Z. On the other hand,

2 AT =T Ax = \T'x.

Thus A = ).
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Let & = a + bi # 0 be an eigenvector corresponding to an eigenvalue .
Then
Ax =Ax =)a + \bi = Aa + Abi.

That is,
Aa =)a and Ab=)\b.

Therefore, the real eigenvector can be taken as a or b, whichever is nonzero.

(2) Let « and y be two eigenvectors such that Az =Ax and Ay =yy and
A#y. Then

' Ay =vz'y = y' Az = \y'z = \z'y.
That is, 'y = 0.

(3) The proof of the first part is too long to be presented here. For
the second part, using Gram-Schmidt orthogonalization procedure and the
assertion in (2) yields the result.

The proof of the rest items are left as exercise. [

From now on, we will discuss real symmetric matrices only.

We next discuss some more facts on positive semi-definite matrices.

Proposition 1.4 Let X, ,, be a symmetric matrix of order m. Then the
following statements are equivalent:

(1) X is a positive semi-definite matriz with r = rank(X).

(2) There exist matrices Ppx, and Qnxn—r such that (P Q) is an orthog-
onal matriz and
Y =PA,P and Q'XQ=0. (1.1.3)

(3) There exist matrices Py, and Quxn—r such that (P Q) is an orthog-
onal matrixz and
P'YP=A. and Q'XQ=0. (1.1.4)

Proof. (1)=(2). Let X,,«m have r positive eigenvalues A;, Az, -+ , A, as-
sociated with an m x r matrix P, the columns of which are orthogonal eigen-
vectors belonging to A;, Az, -+, A, and m — r folds zero eigenvalue, associated

with m — r orthogonal eigenvectors, by which a matrix @ is composed, such

that
(g:)E<P Q):</(1)’”g>, (1.1.5)
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where A, = diag(A\1, A2, -+, A\.). Hence,

Q@¥Q=0 and T=( P Q)(’(‘)T g)(g:)=PATP’, (1.1.6)

(2)=(3). It is obvious.
(3)=(1). Note that rank(X) = r is clear. Suppose that

(g)=tra)-(43)

A, A A,
r = rank(X) = rank = rank 2 .
A 0 0 —-A'A'A

Hence A = 0, implying that X is positive semi-definite. [

Then

Corollary 1.1 Write R = PAY? and S = A;1/2P, then R and S are both

of full column rank and
Y=RR and S'A,S=1,. (1.1.7)

The following two propositions link the eigenvalues with respect to the

quadratic form of matrices.

Proposition 1.5 Let A be a symmetric matriz. Then

/ /
mr/r;ai% a:wt:c = Amax(A) and mr,Ialci;élo mmtm = Amin(A4).
Proof. By (1.1.2),
’Ac ' PAP'z > Ay}
e PPz Y. ¢’
where y = P'x = (y1, Y2, ,¥n) - The assertion thus follows because

" NY2
)‘min < %IT% = /\max
i=1J1%

and the both extremes can be achieved by properly selected y. [
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Proposition 1.6 Let A and B be two positive definite matrices with A > B,
i.e., ' Az > ' Bx for all x. Then A~! < B 1.

Proof. Now that A > 0 and B > 0, imply that  # 0 <= z'Bx # 0, then

A>B < z'Ax > 2'’Bx for all

' Ax
>
— Ba > 1forallx#0
'B"*AB: )
yy’“yy > 1 for all y # 0 (by taking y — Bia)

= /\min(B*%AB'%) > 1(by Proposition 1.5)
= Amax(B2A'B?) < 1(by Proposition 1.3 (6))
yB:A By
Yy
b
’B-lx

—= A 'z <'B 'z for all ©

< 1 for all y # 0( by again Proposition 1.5)

< 1 for all  # 0 (by taking = = B%y)

<~ A '< Bl

This completes the proof. [

1.1.3 Idempotent matrices and orthogonal projection

Theorem 1.1 Let A be a symmetric matriz of order n. Then A2 = A
(referred to as idempotent) if and only if it has r eigenvalues 1 and n — r

eigenvalues zero for some integer r (under this situation, rank(A) =r).

A1
Proof. Let P be such that A = P P’'. Then A? =
An
A2 A1
P P =A=P P’ if and only if \? = \,.
A2 An
This gives the result. Moreover, the rank of A is equal to the number of 1s in

the eigenvalues of A. [



