XEBBRBDBDR A REEFHF N
JetEngsEszasnzEs (SSEPRR)

PEARSON

ALGORITHM DESIGN

B kigit

Jon Kleinberg
Eva Tardos

AERF T

AR HENBKTESSFLZHZM AT (B O

TPl b

i
Algorithm Design
5 % i it

Jon Kleinberg
Eva Tardos
Cornell University

e S N e
it =

&

2D

>

English reprint edition copyright © 2006 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA UNI-
VERSITY PRESS.

Original English language title from Proprietors edition of the Work.

Original English language title: Algorithm Design by Jon Kleinberg, Eva Tardos., Copyright © 2006
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc. , publishing as Prentice Hall, Inc.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).

A F R EN R Pearson Education (HASH HRER) BAUATE AR R B IR KAT .

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

SURFHEANREMES N REFEPEES. RSB M E SR 48547,
AR A RAUR E AR R EE S B S 01-2005-3985 &

KA ER A, BRENwAET. ZS4BEIE . 010-62782989 13501256678 13801310933
FHHEWH Pearson Education (E4HEHARER) HAPHRE, THREERESHE.

BEHEER&RE (CIP) ¥iE

HHB It = Algorithm Design /(%) #3F{AK (Kleinberg, J.), (%) B L (Tardos, E.) = —H
A, —dba . EHERE B, 2006. 1

(REFETRYEE B E B EM B

ISBN 7-302-12260-1

[. 8 1. @5 @ . BFHEI— B — % — 8 —% V. TP301.6

s E A B 1E CIP BB (2005) 45 153547 2

H AR & HEES G b I 1| i (8T Y e = 21 PN |
http://www. tup. com. en Hp % . 100084
T 2 . 0]0-62770175 E R 010-62776969

DRI & WEERFEIR

kAT & b s Basch AT

AT & HEBE RIS T

FF & 185x230 EP3. 54.25

hR R 2006 4F 1 HES 1R 2006 4 1 J1 451 YRER

H 5 ISBN 7-302-12260-1/TP - 7883

D 1~3000

About the Authors

Jon Kleinberg is a professor of Computer Science at
Cornell University. He received his Ph.D. from M.L.T.
in 1996. He is the recipient of an NSF Career Award,
an ONR Young Investigator Award, an IBM OQutstand-
ing Innovation Award, the National Academy of Sci-
ences Award for Initiatives in Research, research fel-
lowships from the Packard and Sloan Foundations,
and teaching awards from the Cornell Engineering
College and Computer Science Department.

Kleinberg’s research is centered around algorithms, particularly those con-
cerned with the structure of networks and information, and with applications
to information science, optimization, data mining, and computational biol-
ogy. His work on network analysis using hubs and authorities helped form the
foundation for the current generation of Internet search engines.

Eva Tardos is a professor of Computer Science at Cor-
nell University. She received her Ph.D. from E6tvos
University in Budapest, Hungary in 1984. She is a
member of the American Academy of Arts and Sci-
ences, and an ACM Fellow; she is the recipient of an
NSF Presidential Young Investigator Award, the Fulk-
erson Prize, research fellowships from the Guggen-
heim, Packard, and Sloan Foundations, and teach-

, ing awards from the Cornell Engineering College and
Computer Science Department, i

Tardos’s research interests are focused on the design and analysis of
algorithms for problems on graphs or networks. She is most known for her
work on network-flow algorithms and approximation algorithms for network
problems. Her recent work focuses on algorithmic game theory, an emerging
area concerned with designing systems and algorithms for selfish users.

Preface

Algorithmic ideas are pervasive, and their reach is apparent in examples both
within computer science and beyond. Some of the major shifts in Internet
routing standards can be viewed as debates over the deficiencies of one
shortest-path algorithm and the relative advantages of another. The basic
notions used by biologists to express similarities among genes and genomes
have algorithmic definitions. The concerns voiced by economists over the
feasibility of combinatorial auctions in practice are rooted partly in the fact that
these auctions contain computationally intractable search problems as special
cases. And algorithmic notions aren’t just restricted to well-known and long-
standing problems; one sees the reflections of these ideas on a regular basis,
in novel issues arising across a wide range of areas. The scientist from Yahoo!
who told us over lunch one day about their system for serving ads to users was

" describing a set of issues that, deep down, could be modeled as a network flow
problem. So was the former student, now a management consultant working
on staffing protocols for large hospitals, whom we happened to meet on a trip
to New York City.

The point is not simply that algorithms have many applications. The
deeper issue is that the subject of algorithms is a powerful lens through which
to view the field of computer science in general. Algorithmic problems form
the heart of computer science, but they rarely arrive as cleanly packaged,
mathematically precise questions. Rather, they tend to come bundled together
with lots of messy, application-specific detail, some of it essential, some of it
extraneous. As a result, the algorithmic enterprise consists of two fundamental
components: the task of getting to the mathematically clean core of a problem,
and then the task of identifying the appropriate algorithm design techniques,
based on the structure of the problem. These two components interact: the
more comfortable one is with the full array of possible design techniques,
the more one starts to recognize the clean formulations that lie within messy

Preface

problems out in the world. At their most effective, then, algorithmic ideas do
not just provide solutions to well-posed problems; they form the language that
lets you cleanly express the underlying questions.

The goal of our book is to convey this approach to algorithms, as a design
process that begins with problems arising across the full range of computing
applications, builds on an understanding of algorithm design techniques, and
results in the development of efficient solutions to these problems. We seek
to explore the role of algorithmic ideas in computer science generally, and
relate these ideas to the range of precisely formulated problems for which we
can design and analyze algorithms. In other- words, what are the underlying
issues that motivate these problems, and how did we choose these particular
ways of formulating them? How did we recognize which design principles were
appropriate in different situations?

In keeping with this, our goal is to offer advice on how to identify clean
algorithmic problem formulations in complex issues from different areas of
computing and, from this, how to design efficient algorithms for the resulting
problems. Sophisticated algorithms are often best understood by reconstruct-
ing the sequence of ideas—including false starts and dead ends—that led from
simpler initial approaches to the eventual solution. The result is a style of ex-
position that does not take the most direct route from problem statement to
algorithm, but we feel it better reflects the way that we and our colleagues
genuinely think about these questions.

Overview

The book is intended for students who have completed a programming-
based two-semester introductory computer science sequence (the standard
“CS1/CS2” courses) in which they have written programs that implement
basic algorithms, manipulate discrete structures such as trees and graphs, and
apply basic data structures such as arrays, lists, queues, and stacks. Since
the interface between CS1/CS2 and a first algorithms course is not entirely
standard, we begin the book with self-contained coverage of topics that at
some institutions are familiar to students from CS1/CS2, but which at other
institutions are included in the syllabi of the first algorithms course. This
material can thus be treated either as a review or as new material; by including
it, we hope the book can be used in a broader array of courses, and with more*
flexibility in the prerequisite knowledge that is assumed.

In keeping with the approach outlined above, we develop the basic algo-
rithm design techniques by drawing on problems from across many areas of
computer science and related fields. To mention a few representative examples
here, we include fairly detailed discussions of applications from systems and
networks (caching, switching, interdomain routing on the Internet), artificial

Preface

intelligence (planning, game playing, Hopfield networks), computer vision
(image segmentation), data mining (change-point detection, clustering), op-
erations research (airline scheduling), and computational biology (sequence
alignment, RNA secondary structure).

The notion of computational intractability, and NP-completeness in par-
ticular, plays a large role in the book. This is consistent with how we think
about the overall process of algorithm design. Some of the time, an interest-
ing problem arising in an application area will be amenable to an efficient
solution, and some of the time it will be provably NP-complete; in order to
fully address a new algorithmic problem, one should be able to explore both
of these options with equal familiarity. Since so many natural problems in
computer science are NP-complete, the development of methods to deal with
intractable problems has become a crucial issue in the study of algorithms,
and our book heavily reflects this theme. The discovery that a problem is NP-
complete should not be taken as the end of the story, but as an invitation to
begin looking for approximation algorithms, heuristic local search techniques,
or tractable special cases. We include extensive coverage of each of these three
approaches.

Pi‘oblems and Solved Exercises

An important feature of the book is the collection of problems. Across all
chapters, the book includes over 200 problems, almost all of them developed
and class-tested in homework or exams as part of our teaching of the course
at Cornell, We view the problems as a crucial component of the book, and
they are structured in keeping with our overall approach to the material. Most
of them consist of extended verbal descriptions of a problem arising in an
application area in computer science or elsewhere out in the world, and part of
the problem is to practice what we discuss in the text: setting up the necessary
notation and formalization, designing an algorithm, and then analyzing it and
proving it correct. (We view a complete answer to one of these problems as
consisting of all these components: a fully explained algorithm, an analysis of
the running time, and a proof of correctness.) The ideas for these problems
come in large part from discussions we have had over the years with people
working in different areas, and in some cases they serve the dual purpose of
recording an interesting (though manageable) application of algorithms that
we haven’t seen written down anywhere else.

To help with the process of working on these problems, we include in
each chapter a section entitled “Solved Exercises,” where we take one or more
problems and describe how to go about formulating a solution. The discussion
devoted to each solved exercise is therefore significantly longer than what
would be needed simply to write a complete, correct solution (in other words,

xiii

Xiv

Preface

significantly longer than what it would take to receive full credit if these were
being assigned as homework problems). Rather, as with the rest of the text,
the discussions in these sections should be viewed as trying to give a sense
of the larger process by which one might think about problems of this type,
culminating in the specification of a precise solution.

It is worth mentioning two points concerning the use of these problems
as homework in a course. First, the problems are sequenced roughly in order
of increasing difficulty, but this is only an approximate guide and we advise
against placing too much weight on it; since the bulk of the problems were
designed as homework for our undergraduate class, large subsets of the
problems in each chapter are really closely comparable in terms of difficulty.
Second, aside from the lowest-numbered ones, the problems are designed to
involve some investment of time, both to relate the problem description to the
algorithmic techniques in the chapter, and then to actually design the necessary
algorithm. In our undergraduate class, we have tended to assign roughly three
of these problems per week.

Pedagogical Features and Supplements

In addition to the problems and solved exercises, the book has a number of
further pedagogical features, as well as additional supplements to facilitate its
use for teaching.

As noted earlier, a large number of the sections in the book are devoted
to the formulation of an algorithmic problem—including its background and
underlying motivation—and the design and analysis of an algorithm for this
problem. To reflect this style, these sections are consistently structured around
a sequence of subsections: “The Problem,” where the problem is described
and a precise formulation is worked out; “Designing the Algorithm,” where
the appropriate design technique is employed to develop an algorithm; and
“Analyzing the Algorithm,” which proves properties of the algorithm and
analyzes its efficiency. These subsections are highlighted in the text with an
icon depicting a feather. In cases where extensions to the problem or further
analysis of the algorithm is pursued, there are additional subsections devoted
to these issues. The goal of this structure is to offer a relatively uniform style
of presentation that moves from the initial discussion of a problem arising in a
computing application through to the detailed analysis of a method to solve it:

A number of supplements are available in support of the book itself. An
instructor’s manual works through all the problems, providing full solutions to
each. A set of lecture slides, developed by Kevin Wayne of Princeton University,
is also available; these slides follow the order of the book’s sections and can
thus be used as the foundation for lectures in a course based on the book. These
files are available at www.aw.com. For instructions on obtaining a professor

Preface

login and password, search the site for either “Kleinberg” or “Tardos” or
contact your local Addison-Wesley representative.

Finally, we would appreciate receiving feedback on the book. In particular,
as in any book of this length, there are undoubtedly errors that have remained
in the final version. Comments and reports of errors can be sent to us by e-mail,
at the address algbook@cs.cornell.edu; please include the word “feedback”
in the subject line of the message.

Chapter-by-Chapter Synopsis

Chapter 1 starts by introducing some representative algorithmic problems. We
begin immediately with the Stable Matching Problem, since we feel it sets
up the basic issues in algorithm design more concretely and more elegantly
than any abstract discussion could: stable matching is motivated by a natural
though complex real-world issue, from which one can abstract an interesting
problem statement and a surprisingly effective algorithm to solve this problem.
The remainder of Chapter 1 discusses a list of five “representative problems”
that foreshadow topics from the remainder of the course. These five problems
are interrelated in the sense that they are all variations and/or special cases
of the Independent Set Problem; but one is solvable by a greedy algorithm,
one by dynamic programming, one by network flow, one (the Independent
Set Problem itself) is NP-complete, and one is PSPACE-complete. The fact that
closely related problems can vary greatly in complexity is an important theme
of the book, and these five problems serve as milestones that reappear as the
book progresses.

Chapters 2 and 3 cover the interface to the CS1/CS2 course sequence
mentioned earlier. Chapter 2 introduces the key mathematical definitions and
notations used for analyzing algorithms, as well as the motivating principles
behind them. It begins with an informal overview of what it means for a prob-
lem to be computationally tractable, together with the concept of polynomial
time as a formal notion of efficiency. It then discusses growth rates of func-
tions and asymptotic analysis more formally, and offers a guide to commonly
occurring functions in algorithm analysis, together with standard applications
in which they arise. Chapter 3 covers the basic definitions and algorithmic
primitives needed for working with graphs, which are central to so many of
the problems in the book. A number of basic graph algorithms are often im-
plemented by students late in the CS1/CS2 course sequence, but it is valuable
to present the material here in a broader algorithm design context. In par-
ticular, we discuss basic graph definitions, graph traversal techniques such
as breadth-first search and depth-first search, and directed graph concepts
including strong connectivity and topological ordering.

XV

xvi

Preface

Chapters 2 and 3 also present many of the basic data structures that will
be used for implementing algorithms throughout the book; more advanced
data structures are presented in subsequent chapters. Our approach to data
structures is to introduce them as they are needed for the implementation of
the algorithms being developed in the book. Thus, although many of the data
structures covered here will be familiar to students from the C51/CS2 sequence,
our focus is on these data structures in the broader context of algorithm design
and analysis.

Chapters 4 through 7 cover four major algorithm design techniques: greedy
algorithms, divide and conquer, dynamic programming, and network flow.
With greedy algorithms, the challenge is to recognize when they work and
when they don’t; our coverage of this topic is centered around a way of clas-
sifying the kinds of arguments used to prove greedy algorithms correct. This
chapter concludes with some of the main applications of greedy algorithms,
for shortest paths, undirected and directed spanning trees, clustering, and
compression. For divide and conquer, we begin with a discussion of strategies
for solving recurrence relations as bounds on running times; we then show
how familiarity with these recurrences can guide the design of algorithms that
improve over straightforward approaches to a number of basic problems, in-
cluding the comparison of rankings, the computation of closest pairs of points
in the plane, and the Fast Fourier Transform. Next we develop dynamic pro-
gramming by starting with the recursive intuition behind it, and subsequently
building up more and more expressive recurrence formulations through appli-
cations in which they naturally arise. This chapter concludes with extended
discussions of the dynamic programming approach to two fundamental prob-
lems: sequence alignment, with applications in computational biology; and
shortest paths in graphs, with connections to Internet routing protocols, Fi-
nally, we cover algorithms for network flow problems, devoting much of our
focus in this chapter to discussing a large array of different flow applications.
To the extent that network flow is covered in algorithms courses, students are
often left without an appreciation for the wide range of problems to which it
can be applied; we try to do justice to its versatility by presenting applications
to load balancing, scheduling, image segmentation, and a number of other
problems.

Chapters 8 and 9 cover computational intractability. We devote most of
our attention to NP-completeness, organizing the basic NP-complete problems
thematically to help students recognize candidates for reductions when they
encounter new problems. We build up to some fairly complex proofs of NP-
completeness, with guidance on how one goes about constructing a difficult
reduction. We also consider types of computational hardness beyond NP-
completeness, particularly through the topic of PSPACE-completeness. We

Preface

find this is a valuable way to emphasize that intractability doesn’t end at
NP-completeness, and PSPACE-completeness also forms the underpinning for
some central notions from artificial intelligence—planning and game playing—
that would otherwise not find a place in the algorithmic landscape we are
surveying.

Chapters 10 through 12 cover three major techniques for dealing with com-
putationally intractable problems: identification of structured special cases,
approximation algorithms, and local search heuristics. Our chapter on tractable
special cases emphasizes that instances of NP-complete problems arising in
practice may not be nearly as hard as worst-case instances, because they often
contain some structure that can be exploited in the design of an efficient algo-
rithm. We illustrate how NP-complete problems are often efficiently solvable
when restricted to tree-structured inputs, and we conclude with an extended
discussion of tree decompositions of graphs. While this topic is more suit-
able for a graduate course than for an undergraduate one, it is a technique
with considerable practical utility for which it is hard to find an existing
accessible reference for students. Our chapter on approximation algorithms
discusses both the process of designing effective algorithms and the task of
understanding the optimal solution well enough to obtain good bounds on it.
As design techniques for approximation algorithms, we focus on greedy algo-
rithms, linear programming, and a third method we refer to as “pricing,” which
incorporates ideas from each of the first two. Finally, we discuss local search
heuristics, including the Metropolis algorithm and simulated annealing. This
topic is often missing from undergraduate algorithms courses, because very
little is known in the way of provable guarantees for these algorithms; how-
ever, given their widespread use in practice, we feel it is valuable for students
to know something about them, and we also include some cases in which
guarantees can be proved.

* Chapter 13 covers the use of randomization in the design of algorithms.
This is a topic on which several nice graduate-level books have been written.
Our goal here is to provide a more compact introduction to some of the
ways in which students can apply randomized techniques using the kind of
background in probability one typically gains from an undergraduate discrete
math course.

Use of the Book

The book is primarily designed for use in a first undergraduate course on
algorithms, but it can also be used as the basis for an introductory graduate
course.

When we use the book at the undergraduate level, we spend roughly
one lecture per numbered section; in cases where there is more than one

xvii

Preface

lecture’s worth of material in a section (for example, when a section provides
further applications as additional examples), we treat this extra material as a
supplement that students can read about outside of lecture. We skip the starred
sections; while these sections contain important topics, they are less central
to the development of the subject, and in some cases they are harder as well.
We also tend to skip one or two other sections per chapter in the first half of
the book (for example, we tend to skip Sections 4.3, 4.7-4.8, 5.5-5.6, 6.5, 7.6,
and 7.11). We cover roughly half of each of Chapters 11-13.

This last point is worth emphasizing: rather than viewing the later chapters
as “advanced,” and hence off-limits to undergraduate algorithms courses, we
have designed them with the goal that the first few sections of each should
be accessible to an undergraduate audience. Our own undergraduate course
involves material from all these chapters, as we feel that all of these topics
have an important place at the undergraduate level.

Finally, we treat Chapters 2 and 3 primarily as a review of material from
earlier courses; but, as discussed above, the use of these two chapters depends
heavily on the relationship of each specific course to its prerequisites.

The resulting syllabus looks roughly as follows: Chapter 1; Chapters 4-8
(excluding 4.3, 4.7-4.9, 5.5-5.6, 6.5, 6.10, 7.4, 7.6, 7.11, and 7.13); Chapter 9
(briefly); Chapter 10, Sections.10.1 and 10.2; Chapter 11, Sections 11.1, 11.2,
11.6, and 11.8; Chapter 12, Sections 12.1-12.3; and Chapter 13, Sections 13.1-
13.5,

The book also naturally supports an introductory graduate course on
algorithms. Our view of such a course is that it should introduce students
destined for research in all different areas to the important current themes in
algorithm design. Here we find the emphasis on formulating problems to be
useful as well, since students will soon be trying to define their own research
problems in many different subfields. For this type of course, we cover the
later topics in Chapters 4 and 6 (Sections 4.5-4.9 and 6.5-6.10), cover all of
Chapter 7 (moving more rapidly through the early sections), quickly cover NP-
completeness in Chapter 8 (since many beginning graduate students will have
seen this topic as undergraduates), and then spend the remainder of the time
on Chapters 10-13. Although our focus in an introductory graduate course is
on the more advanced sections, we find it useful for the students to have the
full book to consult for reviewing or filling in background knowledge, given
the range of different undergraduate backgrounds among the students in such
a course.

Finally, the book can be used to support self-study by graduate students,
researchers, or computer professionals who want to get a sense for how they

Preface

might be able to use particular algorithm design techniques in the context of
their own work. A number of graduate students and colleagues have used
portions of the book in this way.

Aéknowledgments

This book grew out of the sequence of algorithms courses that we have taught
at Cornell. These courses have grown, as the field has grown, over a number of
years, and they reflect the influence of the Cornell faculty who helped to shape
them during this time, including Juris Hartmanis, Monika Henzinger, John
Hopcroft, Dexter Kozen, Ronitt Rubinfeld, and Sam Toueg. More generally, we
would like to thank all our colleagues at Cornell for countless discussions both
on the material here and on broader issues about the nature of the field.

The course staffs we’ve had in teaching the subject have been tremen-
dously helpful in the formulation of this material. We thank our undergradu-
ate and graduate teaching assistants, Siddharth Alexander, Rie Ando, Elliot
Anshelevich, Lars Backstrom, Steve Baker, Ralph Benzinger, John Bicket,
Doug Burdick, Mike Connor, Vladimir Dizhoor, Shaddin Doghmi, Alexan-

der-Druyan, Bowei Du, Sasha Evfimievski, Ariful Gani, Vadim Grinshpun, -

Ara Hayrapetyan, Chris Jeuell, Igor Kats, Omar Khan, Mikhail Kobyakov,
Alexei Kopylov, Brian Kulis, Amit Kumar, Yeongwee Lee, Henry Lin, Ash-
win Machanavajjhala, Ayan Mandal, Bill McCloskey, Leonid Meyerguz, Evan
Moran, Niranjan Nagarajan, Tina Nolte, Travis Ortogero, Martin Pal, Jon
Peress, Matt Piotrowski, Joe Polastre, Mike Priscott, Xin Qi, Venu Ramasubra-
manian, Aditya Rao, David Richardson, Brian Sabino, Rachit Siamwalla, Se-
bastian Silgardo, Alex Slivkins, Chaitanya Swamy, Perry Tam, Nadya Travinin,
Sergei Vassilvitskii, Matthew Wachs, Tom Wexler, Shan-Leung Maverick Woo,
Justin Yang, and Misha Zatsman. Many of them have provided valuable in-
sights, suggestions, and comments on the text. We also thank all the students
in these classes who have provided comments and feedback on early drafts of
the book over the years.

For the past several years, the development of the book has benefited
greatly from the feedback and advice of colleagues who have used prepubli-
cation drafts for teaching. Anna Karlin fearlessly adopted a draft as her course
textbook at the University of Washington when it was still in an early stage of
development; she was followed by a number of people who have used it either
as a course textbook or as a resource for teaching: Paul Beame, Allan Borodin,
Devdatt Dubhashi, David Kempe, Gene Kleinberg, Dexter Kozen, Amit Kumar,
Mike Molloy, Yuval Rabani, Tim Roughgarden, Alexa Sharp, Shanghua Teng,
Aravind Srinivasan, Dieter van Melkebeek, Kevin Wayne, Tom Wexler, and

Xix

XX

Preface

Sue Whitesides. We deeply appreciate their input and advice, which has in-
formed many of our revisions to the content. We would like to additionally
thank Kevin Wayne for producing supplementary material associated with the
book, which promises to greatly extend its utility to future instructors.

In a number of other cases, our approach to particular topics in the book
reflects the infuence of specific colleagues. Many of these contributions have
undoubtedly escaped our notice, but we especially thank Yuri Boykov, Ron
Elber, Dan Huttenlocher, Bobby Kleinberg, Evie Kleinberg, Lillian Lee, David
McAllester, Mark Newman, Prabhakar Raghavan, Bart Selman, David Shmoys,
Steve Strogatz, Olga Veksler, Duncan Watts, and Ramin Zabih.

It has been a pleasure working with Addison Wesley over the past year.
First and foremost, we thank Matt Goldstein for all his advice and guidance in
this process, and for helping us to synthesize a vast amount of review material
into a concrete plan that improved the book. Our early conversations about
the book with Susan Hartman were extremely valuable as well. We thank Matt
and Susan, together with Michelle Brown, Marilyn Lloyd, Patty Mahtani, and
Maite Suarez-Rivas at Addison Wesley, and Paul Anagnostopoulos and Jacqui
Scarlott at Windfall Software, for all their work on the editing, production, and
management of the project. We further thank Paul and Jacqui for their expert
composition of the book. We thank Joyce Wells for the cover design, Nancy
Murphy of Dartmouth Publishing for her work on the figures, Ted Laux for
the indexing, and Carol Leyba and Jennifer McClain for the copyediting and
proofreading.

We thank Anselm Blumer (Tufts University), Richard Chang (University of
Maryland, Baltimore County), Kevin Compton (University of Michigan), Diane
Cook (University of Texas, Arlington), Sariel Har-Peled (University of Illinois,
Urbana-Champaign), Sanjeev Khanna (University of Pennsylvania), Philip
Klein (Brown University), David Matthias (Ohio State University), Adam Mey-
erson (UCLA), Michael Mitzenmacher (Harvard University), Stephan Olariu
(Old Dominion University), Mohan Paturi (UC San Diego), Edgar Ramos (Uni-
versity of Illinois, Urbana-Champaign), Sanjay Ranka (University of Florida,
Gainesville), Leon Reznik (Rochester Institute of Technology), Subhash Suri
(UC Santa Barbara), Dieter van Melkebeek (University of Wisconsin, Madi-
son), and Bulent Yener (Rensselaer Polytechnic Institute) who generously
contributed their time to provide detailed and thoughtful reviews of the man-
uscript; their comments led to numerous improvements, both. large and small,
in the final version of the text.

Finally, we thank our families—Lillian and Alice, and David, Rebecca, and
Amy. We appreciate their support, patience, and many other contributions
more than we can express in any acknowledgments here.

Preface

This book was begun amid the irrational exuberance of the late nineties,
when the arc of computing technology seemed, to many of us, briefly to pass
through a place traditionally occupied by celebrities and other inhabitants of
the pop-cultural firmament. (It was probably just in our imaginations.) Now,
séveral years after the hype and stock prices have come back to earth, one can
appreciate that in some ways computer science was forever changed by this
period, and in other ways it has remained the same: the driving excitement
that has characterized the field since its early days is as strong and enticing as
ever, the public’s fascination with information technology is still vibrant, and
the reach of computing continues to extend into new disciplines. And so to
all students of the subject, drawn to it for so many different reasons, we hope
you find this book an enjoyable and useful guide wherever your computational
pursuits may take you.

Jon Kleinberg
Eva Tardos
Ithaca, 2005

Contents

About the Authors iv
Preface Xi
1 Introduction: Some Representative Problems 1
1.1 A First Problem: Stable Matching 1
1.2 Five Representative Problems 12
Solved Exercises 19
Exercises 22
Notes and Further Reading 28
2 Basics of Algorithm Analysis 29
2.1 Computational Tractability 29
2.2 Asymptotic Order of Growth 35
2.3 Implementing the Stable Matching Algorithm Using Lists and
Arrays 42
2.4 A Survey of Common Running Times 47
2.5 A More Complex Data Structure: Priority Queues 57
Solved Exercises 65
Exercises 67
Notes and Further Reading 70
3 Graphs 73
3.1 Basic Definitions and Applications 73
3.2 Graph Connectivity and Graph Traversal 78
3.3 Implementing Graph Traversal Using Queues and Stacks 87
3.4 Testing Bipartiteness: An Application of Breadth-First Search 94
3.5 Connectivity in Directed Graphs 97

vi

Contents

3.6 Directed Acyclic Graphs and Topological Ordering 99
Solved Exercises 104
Exercises 107
Notes and Further Reading 112
4 Greedy Algorithms 115
4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead 116
4.2 Scheduling to Minimize Lateness: An Exchange Argument 125
4.3 Optimal Caching: A More Complex Exchange Argument 131
44 Shortest Paths in a Graph 137
4.5 The Minimum Spanning Tree Problem 142
4.6 Implementing Kruskal’s Algorithm: The Union-Find Data
Structure 151
4.7 Clustering 157
4.8 Huffman Codes and Data Compression 161
*4.9 Minimum-Cost Arborescences: A Multi-Phase Greedy
Algorithm 177
Solved Exercises 183
Exercises 188
Notes and Further Reading 205
S Divide and Conquer 209
5.1 A First Recurrence: The Mergesort Algorithm 210
5.2 Further Recurrence Relations 214
5.3 Counting Inversions 221
5.4 Finding the Closest Pair of Points 225
5.5 Integer Multiplication 231
5.6 Convolutions and the Fast Fourier Transform 234
Solved Exercises 242
Exercises 246
Notes and Further Reading 249
6 Dynamic Programming 251
6.1 Weighted Interval Scheduling: A Recursive Procedure 252 '
6.2 Principles of Dynamic Programming: Memoization or Iteration
over Subproblems 258
6.3 Segmented Least Squares: Multi-way Choices 261

* The star indicates an optional section. (See the Preface for more information about the relationships
among the chapters and sections.)

