HHHHHHH

?SHE *’J'ﬁ%zﬁﬁ*ﬁ

JavaiE =

(SRR - 5B2hR)

Mark Allen Weiss

R presEEess

&
L s

China Machine Press

REMSE AN

JavaiE E ik

(SE3ZhR - SR2hR)

English reprint edition copyright © 2006 by Pearson Education Asia Limited and China
Machine Press.
Original English language title: Data Structures and Algorithm Analysis in Java, Second

Edition (ISBN 0-321-37013-9) by Mark Allen Weiss, Copyright © 2007 by Pearson Education,
Inc.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing
as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).

#4453 3 BAENR HiPearson Education Asia Ltd FZAUHUAR Tl AR K AR . REH
MREBEER, AELUMER S REHSPEABNE .

WRT e ARLEMEEAN (PaEhEFS. B1ENTEREMSEGEHX) ¥
BRI '

A 43 FillE A Pearson Education (374 %H HRER) BOEPithi=%E, TiREEAR
e,

ML . B,
FHEEmE LRTRERITESHR

AHENEIRS: B 01-2006-3994
EREREE (CIP) KiiE

BAELEH SEEOH JavalB SR (FEIOR - F20R) / () F#F (Weiss, M. A.) 3.
—dbnt: HUAR Tk tiAR#:, 2007.1

(R IRASEE)

45453 Data Structures and Algorithm Analysis in Java, Second Edition

ISBN 7-111-19876-X

LB I T OBREK — K OBESH - KX OIAVAIEE - BFRIt -
#¥3r IV.TP311.12

o [B A B S i CTP B % 7 (2006) #106914-5

LR Tl AR AL (s poIRiEc 75 B Ati22% WBBUAES 100037)
FiFEgiR: BiRE

e ACHIRREN R ENRI - Braeds bt kT & AT
20074E1 A 5 1ARCEE 1R EN R

170mm % 242mm -+ 36E[lgk

EHr: 55.007C

LA, mART. BRI, i, mAREETERER
APk (010) 68326294

BIRE 89S

XEE UK, Eni KR ERE RS BRNERTE, EHFERER
ARHAR A TR T Z2W s hERXAENES, FEEEREERR
BN+ ZERLARKEN. BGRE. At Rd, ZENZLASHER
ORRBEFHE A, THENFEF 0 £ % WAL RS B B i BT 4%
BT P AR R 28 SRR 2, AN UBERI TR ZTRYERE, BB T2 RS, BEM
TEFEARRIE, XAFEHESE, RO EHA S EE AT R .

LA, E2FREBMAKENEZ T, REQOHE™ LR BRE, MLl AL
HFERHEFEY . X EYEE R B LNE, hAMKE; WLk
HRIRAEHTRIE LRREERE. ARERBEEARBNRASE. AR
BLAR T, EE %R EEKEL T REYLR & RN L4 AR 2 0886 058 i
ZEFEEZL. Bk, 518 EIMEFE HHEHLZA R % E BB E F i
KRR ER, i 5 A, BiREEAHR RS H 2.

ﬂﬁIﬂﬁWﬁ&ﬁ@i%Eﬁﬁﬁﬂﬁ?ﬁmﬂ“&ﬁ%%ﬁﬁﬁ%%E
19984EFF 4, A RIS LIEE sUKTE Tk, BEREIIMBEM L. 21)L4
HIAWSE 5, #{15Prentice Hall, Addison—Wesiey, McGraw-Hill, Morgan
KaufmannZF it 7 35 2 MR A B T RIFATEL R, WEMBUA RBE FhEkt o
% i Tanenbaum, Stroustrup, Kernighan, Jim GrayZ% ki 4 50 —H#HE 2 H1E 5
L “THEHLBHEN S SHERRHR, g%, Wk ER. KEASHENEE,
WIEARB TiXEMNB &SI

“HRILBHZEAS” R TESS T EANMESRR R, BNRERAL
feft TR RS, BAREY W HARE T BRI T WEBAESh
Y RIEHAEMEPEAEE, AOEERALBOPERERF. £4, “HHEILR
FANE" SR TEEA SR, XSREERETRLTRIFMOM, FHTF2
BRI AERBM MBS ZBE, At —BH 5RBITT 7 RerEal.

BEE FF R IR EEMEM K ENB G, 2F R E BB
TRABLREBD A — DG B . Ak, A FEMAS EBMII hE, £ 1
HEE WA Z THR=ARFIOHEIEM: B “HEIBENE" 25,
HRCENMR A Bt , WIS BRITREH “BMFRRBE" 5 RN, SI3#4E 705
F45 “Schaum’s Outlines” RFIH L “2XKLMEIHIEF]". HTRIEBX=ZEN
D BRIBURME, FIRHA T B AR Y R FE IR 1IRSS , 42 WP T b BB R
EFKRE. HERE. HHRRY. SERY. REREKRF. MRA%. i
K%, PEBHHE RS, WRETLIAKY:. HEELELRY. PEARK%. briis
IRASF. dEalp K%, diik%., MRFER TR, BMKE. WAL T ¥,

iv

o [[A B 2 A PR NAE 0 2 B P9 B R K SRR AL A 76 T REALAD & 4 SR
ELREAR FRIEFENS, HRMMRELEE R MR EE .

3 = 2 I\ 45 2 W 7 R AR L 6 P SR B B L PR R T SEBL R
ML BB TR . S EM YT AM. 1. T., Stanford, U.C. Berkeley,
C. M. U. %t RAM K%M, AO0UEERTRFRI. BRdgh. RIERL. it
B RSN . SR, SIREE. RMTRE. AR, SEE5MS%. BEEEF
B AR T AL L 38 R RO IR, T E & AR —A I BB SRS
2F. ARHE=TERARE. ANCESEFOJLEFREBCRM. £iXEH#AE
WA AERIIESI 2T, & SRR RIS b R ETA X,

BRI S, SROHEM . —H0EE . FHROSEE. RBamgmE, XERR
ERAGESAE T REOERIE, EROGBIRRERE, kB0 IESHA]
KFX LR BARI EEREB . B MR RRBRNNEERSOER. EEATF
I A 2 A B 10 T V4R R I ey T4 OE . WA AR T A T

B, F-hpf: hzjsj@hzbook.com
BEZEIE: (010) 68995264

BeZRMba: AbRT R E E T EEELS
BB 4aG: 100037

EXESERE

(&%&%u%ﬁ)
) LR S XXM LEHK

FHhE FRFRE FEY hBEF
I AR 49 &L HeHF AL
JLRC €3 g EWE OE W

7eA8 R HEHZ BHE > 3 S

¥4 A2 o AZHER #MAL

To my one and only, Jill.

Purpose/Goals

This new Java edition describes data structures, methods of organizing large amounts of
data, and algorithm analysis, the estimation of the running time of algorithms. As computers
become faster and faster, the need for programs that can handle large amounts of input
becomes more acute. Paradoxically, this requires more careful attention to efficiency, since
inefficiencies in programs become most obvious when input sizes are large. By analyzing
an algorithm before it is actually coded, students can decide if a particular solution will be
feasible. For example, in this text students look at specific problems and see how careful
implementations can reduce the time constraint for large amounts of data from 16 years
to less than a second. Therefore, no algorithm or data structure is presented without an
explanation of its running time. In some cases, minute details that affect the running time
of the implementation are explored.

Once a solution method is determined, a program must still be written. As computers
have become more powerful, the problems they must solve have become larger and more
complex, requiring development of more intricate programs. The goal of this text is to teach
students good programming and algorithm analysis skills simultaneously so that they can
develop such programs with the maximum amount of efficiency:.

This book is suitable for either an advanced data structures (CS7) course or a first-year
graduate course in algorithm analysis. Students should have some knowledge of intermedi-
ate programming, including such topics as object-based programming and recursion, and
some background in discrete math. '

Approach
Although the material in this text is largely language independent, programming requires
the use of a specific language. As the title implies, we have chosen Java for this book.

Java is a relatively new language that is often examined in comparison with C++. Java
offers many benefits, and programmers often view Java as a safer, more portable, and
easier-to-use language than C++. As such, it makes a fine core language for discussing and
implementing fundamental data structures. Other important parts of Java, such as threads
and its GUI, although important, are not needed in this text and thus are not discussed.

Complete versions of the data structures, in both Java and C++, are available on the
Internet. We use similar coding conventions to make the parallels between the two languages
more evident.

viii

Summary of the Most Significant Changes in the Second Edition

The second edition incorporates numerous bug fixes, and many parts of the book have
undergone revision to increase clarity of presentation. In addition:

« Throughout the text, the code has been updated as appropriate to use modern features
from Java 5.0.

« Chapter 3 has been significantly revised and contains a discussion of the use of
the standard ArrayList and LinkedList classes (and their iterators) as well as an
implementation of the standard ArrayList and LinkedList classes.

« Chapter 4 has been revised to include a discussion of the TreeSet and TreeMap classes,
along with an extensive example illustrating their use in the design of efficient
algorithms. Chapter 9 also includes an example that makes use of the standard TreeMap
to implement a shortest path algorithm.

« Chapter 7 contains a discussion of the standard sort algorithms, including an
illustration of the techniques involved in implementing the overloaded standard sort
algorithms.

Overview

Chapter 1 contains review material on discrete math and recursion. I believe the only way
to be comfortable with recursion is to see good uses over and over. Therefore, recursion
is prevalent in this text, with examples in every chapter except Chapter 5. Chapter 1 also
presents material that serves as a review of .inheritance in Java. Included is a discussion of
Java 5 generics.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic analysis and
its major weaknesses. Many examples are provided, including an in-depth explanation of
logarithmic running time. Simple recursive programs are analyzed by intuitively converting
them into iterative programs. More complicated divide-and-conquer programs are intro-
duced, but some of the analysis (solving recurrence relations) is implicitly delayed until
Chapter 7, where it is performed in detail.

Chapter 3 covers lists, stacks, and queues. This chapter has been significantly revised
from prior editions. It now includes a discussion of the Collections API ArrayList and
LinkedList classes, and it provides implementations of a significant subset of the collections
API ArrayList and LinkedList classes.

Chapter 4 covers trees, with an emphasis on search trees, including external search trees
(B-trees). The UNIX file system and expression trees are used as examples. AVL trees and
splay trees are introduced. More careful treatment of search tree implementation details is
found in Chapter 12. Additional coverage of trees, such as file compression and game trees,
is deferred until Chapter 10. Data structures for an external medium are considered as the
final topic in several chapters. New to this edition is a discussion of the Collections API
TreeSet and TreeMap classes, including a significant example that illustrates the use of three
separate maps to efficiently solve a problem.

Chapter 5 is a relatively short chapter concerning hash tables. Some analysis is per-
formed, and extendible hashing is covered at the end of the chapter.

iX

Chapter 6 is about priority queues. Binary heaps are covered, and there is additional
material on some of the theoretically interesting implementations of priority queues. The
Fibonacci heap is discussed in Chapter 11, and the pairing heap is discussed in Chapter
12,

Chapter 7 covers sorting. It is very specific with respect to coding details and analysis.
All the important general-purpose sorting algorithms are covered and compared. Four
algorithms are analyzed in detail: insertion sort, Shellsort, heapsort, and quicksort. External
sorting is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time. This is a
short and specific chapter that can be skipped if Kruskal’ algorithm is not discussed.

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not only
because they frequently occur in practice but also because their running time is so heavily
dependent on the proper use of data structures. Virtually all of the standard algorithms
are presented along with appropriate data structures, pseudocode, and analysis of running
time. To place these problems in a proper context, a short discussion on complexity theory
(including NP-completeness and undecidability) is provided.

Chapter 10 covers algorithm design by examining common problem-solving tech-
niques. This chapter is heavily fortified with examples. Pseudocode is used in these later
chapters so that the student’s appreciation of an example algorithm is not obscured by
implementation details.

Chapter 11 deals with-amortized analysis. Three data structures from Chapters 4 and
6 and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 covers search tree algorithms, the k-d tree, and the pairing heap. This chapter
departs from the rest of the text by providing complete and careful implementations for the
search trees and pairing heap. The material is structured so that the instructor can integrate
sections into discussions from other chapters. For example, the top-down red-black tree in
Chapter 12 can be discussed along with AVL trees (in Chapter 4).

Chapters 1-9 provide enough material for most one-semester data structures courses.
If time permits, then Chapter 10 can be covered. A graduate course on algorithm analysis
could cover Chapters 7-11. The advanced data structures analyzed in Chapter 11 can easily
be referred to in the earlier chapters. The discussion of NP-completeness in Chapter 9 is far
too brief to be used in such a course. You might find it useful to use an additional work on
NP-completeness to augment this text.

Exercises

Exercises, provided at the end of each chapter, match the order in which material is
presented. The last exercises may address the chapter as a whole rather than a specific
section. Difficult exercises are marked with an asterisk, and more challenging exercises
have two asterisks.

References

References are placed at the end of each chapter. Generally the references either are his-
torical, representing the original source of the material, or they represent extensions and
improvements to the results given in the text. Some references represent solutions to exer-
cises.

X

Supplements

The following supplements are available to all readers at www.aw.com/cssupport:
* Source code for example programs

In addition, the following material is available only to qualified instructors at Addison-
Wesley’s Instructor Resource Center (www.aw. comllrc) Visit the IRC or contact your
campus A-W representative for access.

» Solutions to selected exercises

* Figures from the book

Acknowledgments
" Many, many people have helped me in the preparation of books in this series. Some are
listed in other versions of the book; thanks to all.

As usual, the writing process was made easier by the professionals at Addison-Wesley.
I'd like to thank my editor, Michael Hirsch, and production editor, Marilyn Lloyd. I'd also
like to thank Paul Anagnostopoulos and his staff at Windfall Software for their fine work
putting the final pieces together. My wonderful wife Jill deserves extra special thanks for
everything she does.

Finally, I'd like to thank the numerous readers who have sent e-mail messages and
pointed out errors or inconsistencies in earlier versions. My World Wide Web page
www.cis.fiu.edu/~weiss will also contain updated source code (in Java, C++, and C), an
errata list, and a link to submit bug reports.

MAW
Miami, Florida

Preface vii

Chapter 1 Introduction

1.z
152

13

1.4

1185

1.6

What’s the Book About? 1

Mathematics Review 2

1.2.1 Exponents 3

1.2.2 Logarithms 3

L2.3 —Series &

1.2.4 Modular Arithmetic 5

125 ThePWord 6

A Brief Introduction to Recursion 7
Implementing Generic Components Pre Java 5 11
14.1 UsingObject for Genericity 12

1.42 Wrappers for Primitive Types 12

143 Using Interface Types for Genericity 13
144 Compatibility of Array Types 15
Implementing Generic Components Using Java 5 Generics
1.5.1 Simple Generic Classes and Interfaces 16
1.5.2 Autoboxing/Unboxing 17

1.5.3 Wildcards with Bounds 18

154 Generic Static Methods 19

15.5 Type Bounds 20

15.6 Type Erasure 21

1.5.7 Restrictions on Generics 22

Function Objects 23

Summary 25

Exercises 25

References 26

16

Xii

Chapter 2 Algorithm Analysis

2.1
2:2
2.3
2.4

Mathematical Background 29

Model 32
What to Analyze 32
Running Time Calculations 35

24.1 A Simple Example 35

24.2 General Rules 36

243 Solutions for the Maximum Subsequence Sum Problem 38
244 Logarithms in the Running Time 44

245 Checking Your Analysis 48

2.4.6 A Grain of Salt 48

Summary 50

Exercises 50

References 55

Chapter 3 Lists, Stacks, and Queues

3.1
3.2

33

3.4

3.5
3.6

3.7

Abstract Data Types (ADTs) 57

The List ADT 58
3.2.1 Simple Array Implementation of Lists 58
3.2.2 Simple Linked Lists 59

Lists in the Java Collections API 60

3.3.1 Collection Interface 61

3.3.2 Iterators 62

3.3.3 The List Interface, ArrayList, and LinkedList 63
3.3.4 Example: Using remove on a LinkedList 65

3.3.5 Listlterators 66

Implementation of ArrayList 67

34.1 The Basic Class 68

3.4.2 The Iterator and Java Nested and Inner Classes 68

Implementation of LinkedList 75

The Stack ADT 82

3.6.1 Stack Model 82

3.6.2 Implementation of Stacks 83

3.6.3 Applications 83

The Queue ADT 91

3.7.1 Queue Model 091

3.7.2 Array Implementation of Queues 91
3.7.3 Applications of Queues 94
Summary 95

Exercises 95

29

57

Xiii

Chapter 4 Trees 101

4.1

Preliminaries 101
4.1.1 Implementation of Trees 102
4.1.2 Tree Traversals with an Application 103

4.2 Binary Trees 107
4.2.1 Implementation 108
4.2.2 An Example: Expression Trees 109
4.3 The Search Tree ADT—Binary Search Trees 112
4.3.1 contains 113
4.3.2 findMinand findMax 115
433 insert 115
434 remove 117
4.3.5 Average-Case Analysis 120
4.4 AVL Trees 123
4.4.1 Single Rotation 125
4.4.2 Double Rotation 128
4.5 Splay Trees 135
4.5.1 A Simple Idea (That Does Not Work) 135
4.5.2 Splaying 137
4.6 Tree Traversals (Revisited) 143
4.7 B-Trees 145
4.8 Sets and Maps in the Standard Library 150
48.1 Sets 151
482 Maps 151
4.8.3 - Implementation of TreeSet and TreeMap 152
484 An Example That Uses Several Maps 152
4.9 Summary 157
Exercises 159
References 165
Chapter 5 Hashing 169
5.1 General Idea 169
5.2 Hash Function 170
5.3 Separate Chaining 172
5.4 Hash Tables Without Linked Lists 177
5.4.1 Linear Probing 177
5.4.2 Quadratic Probing 179
5.4.3 Double Hashing 181
5.5 Rehashing 186

Xiv

5.6 Hash Tables in the Standard Library 187
5.7 Extendible Hashing 190

Summary 193

Exercises 194

References 198

Chapter 6 Priority Queues (Heaps)
6.1 Model 201
6.2 Simple Implementations 202
6.3 Binary Heap 202
6.3.1 Structure Property 203
6.3.2 Heap Order Property 205
6.3.3 Basic Heap Operations 205
6.3.4 Other Heap Operations 210
6.4 Applications of Priority Queues 214
6.4.1 The Selection Problem 214
6.4.2 Event Simulation 215
6.5 d-Heaps 216
6.6 Leftist Heaps 217
6.6.1 Leftist Heap Property 217
6.6.2 Leftist Heap Operations 218
6.7 Skew Heaps 225
6.8 Binomial Queues 227
6.8.1 Binomial Queue Structure 228
6.8.2 Binomial Queue Operations 229
6.8.3 Implementation of Binomial Queues 232
6.9 Priority Queues in the Standard Library 237
Summary 237
Exercises 239
References 243

Chapter 7 Sorting
7.1 Preliminaries 247
7.2 Insertion Sort 248
7.2.1 The Algorithm 248
7.2.2 Analysis of Insertion Sort 248
7.3 A Lower Bound for Simple Sorting Algorithms 249
~ 7.4 Shellsort 250
74.1 Worst-Case Analysis of Shellsort 252

201

247

XV

7.5 Heapsort 254
7.5.1 Analysis of Heapsort 256

- 7.6 Mergesort 258
7.6.1 Analysis of Mergesort 260

7.7 Quicksort 264
7.7.1 Picking the Pivot 264
7.7.2 Partitioning Strategy 266
7.7.3 Small Arrays 268
7.7.4 Actual Quicksort Routines 268
7.7.5 Analysis of Quicksort 271
7.7.6 A Linear-Expected-Time Algorithm for Selection 274

7.8 A General Lower Bound for Sorting 276
7.8.1 Decision Trees 276

7.9 Bucket Sort 278

7.10 External Sorting 279
7.10.1 Why We Need New Algorithms 279
7.10.2 Model for External Sorting 279
7.10.3 The Simple Algorithm 279
7.10.4 Multiway Merge 281
7.10.5 Polyphase Merge 282
7.10.6 Replacement Selection 283

Summary 284
Exercises - 285
References 290

Chapter 8 The Disjoint Set Class 293

8.1 Equivalence Relations 293

8.2 The Dynamic Equivalence Problem 294
8.3 Basic Data Structure 295

8.4 Smart Union Algorithms 299

8.5 Path Compression 301

8.6 Worst Case for Union-by-Rank and Path Compression 303
8.6.1 Analysis of the Union/Find Algorithm 304

8.7 An Application 309
Summary 312
Exercises 312
References 314

XVi

Chapter 9 Graph Algorithms 317

9.1

9.2
9.3

9.4

9.5

9.6

9.7

Definitions 317

9.1.1 Representation of Graphs 318
Topological Sort 320

Shortest-Path Algorithms 323

9.3.1 Unweighted Shortest Paths 325

9.3.2 Dijkstras Algorithm 329

9.3.3 Graphs with Negative Edge Costs 338
9.34 Acyclic Graphs 338

9.3.5 All-Pairs Shortest Path 342

9.3.6 Shortest-Path Example 342

Network Flow Problems 344
9.4.1 A Simple Maximum-Flow Algorithm 344

Minimum Spanning Tree 349

9.5.1 Prim’s Algorithm 351

9.5.2 Kruskals Algorithm 353
Applications of Depth-First Search 355
9.6.1 Undirected Graphs 357

9.6.2 Biconnectivity 358

9.6.3 Euler Circuits 361

9.6.4 Directed Graphs 366

9.6.5 Finding Strong Components 367

Introduction to NP-Completeness 369
9.7.1 Easyvs.Hard 369

9.7.2 The Class NP 370

9.7.3 NP-Complete Problems 371
Summary 373

Exercises 373

References 381

Chapter 10 Algorithm Design Techniques 385

10.1

10.2

Greedy Algorithms 385

10.1.1 A Simple Scheduling Problem 386

10.1.2 Huffman Codes 389

10.1.3 Approximate Bin Packing 395

Divide and Conquer 403

10.2.1 Running Time of Divide and Conquer Algorithms 404
10.2.2 Closest-Points Problem 406

10.2.3 The Selection Problem 411

10.2.4 Theoretical Improvements for Arithmetic Problems 414

