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FOREWORD

This book is the outcome of years of collaboration among the three coauthors. The
collaboration resulted in a number of papers, whose most significant results compose
the major portion of this book. The principal coauthor is Dr. Yiqi Zhang. He joined
the postdoctoral research station of Electronic Science and Technology at Xi’an Jiao-
tong University in 2012, under the supervision of Prof. Yanpeng Zhang, who is in
charge of the “Quantum Control of Multi-Wave Mixing-Key Scientific and Techno-
logical Innovation Team” of the Shaanxi Province. In the past few decades, Prof.
Y.P. Zhang and his research team generated a lot of notable scientific results, owing
to a solid foundation and inspiring academic atmosphere, which provided abundant
nourishment for quick development of younger researchers. Prof. Milivoj Beli¢ is
team’s international collaborator, who started collaborating with Dr. Y.Q. Zhang
during his stay in Germany. Prof. Beli¢ is professor in physics at the Texas A&M
University at Qatar and the team leader of the Qatar Nonlinear Science Initiative.
Thanks to the strong support for research by the Qatar National Research Fund,
Dr. Y.Q. Zhang was able to visit Doha for extended periods in the past few years.

The book is a summary of coauthors research during the past five years, and
the results are obtained and published jointly. The results involve not only analy-
tical analysis but also extensive numerical simulations. The book covers a series of
research topics in photonics of high current interest, including photonic topological
insulators, optical rogue waves, Airy beams, Talbot effect, optical vortices, and other.
The contents of the book are as follows.

In Chapter 1, the theory of physical models that will be expounded in this book
is briefly introduced, which includes the derivation of the paraxial wave equation
and the development of susceptibilities in atomic vapors.

In Chapter 2, the spatial periodic modulation of light is considered. By using
the three-beam interference method and nonlinear phase shift modulation, we first
investigate the photonic topological insulators in atomic vapors. Secondly, we in-
vestigate the Talbot effect resulting from periodically modulated multi-wave mixing.
Thirdly, we discuss the nonlinear Talbot effect of rogue waves, which is a real nonlin-
ear optical effect. The effects mentioned are generated in atomic or bulk dielectric
media. In the last section of the Chapter, we discuss spatial light modulation in
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discrete systems, resulting in the proposal of a beam combiner and splitter.

In Chapter 3, the role of nonlinearities in light modulation is discussed. We
first demonstrate that optical vortices (as well as vortex pairs) appear in atomic va-
pors during propagation, when the third- and fifth-order nonlinearities (the so-called
cubic-quintic competing nonlinearities) are considered. Secondly, the interaction of
incoherent solitons in a photorefractive medium is investigated, in which the nonlin-
earity is saturable. The last topic discussed in this Chapter is that of azimuthons,
which connect necklace solitons and optical vortices. In this part, we consider a
weak Kerr nonlinearity, but with deep potentials of different symmetries.

In Chapter 4, the propagation dynamics of some novel optical beams is investi-
gated, including Airy, Bessel-Gauss, and Laguerre-Gauss beams, as well as Fresnel
diffraction patterns. In addition, Mathieu and Weber beams are discussed from the
same point of view. The media in which these beams propagate include linear me-
dia, Kerr and saturable nonlinear media, and media with harmonic potential. We
find that spatial solitons can be formed during interaction of Airy beams in nonlin-
ear media, but the solitons do not exhibit the self-accelerating property. We also
show how Airy wave functions, Airy breathers and (dual) Airy-Talbot effect can be
considered from a unified viewpoint. Based on the harmonic potential model, we
discover a new class of self-Fourier beams — the beams whose Fourier transform are
the beams themselves. In addition, if the harmonic potential is inserted into the
fractional Schrédinger equation, we show that a Gaussian beam propagates along a
zigzag and a funnel-like path in one and two dimensions.

In Chapter 5, a summary of the book is presented, with an outlook on future
investigations.

Such an arrangement of the book not only provides for a relative independence
of topics discussed in different chapters, but also allows for immanent connections
among the topics. We believe this book may become a useful reference for researchers
in photonics. Despite our careful exposition, mistakes cannot be avoided in a book
addressing very recent research advances. Therefore, comments and criticisms are
welcome.

In addition to the support from the China Postdoctoral Science Foundation (Nos.
2014T70923 and 2012M521773), the project was also supported by the National Ba-
sic Research Program of China (No. 2012CB921804), the National Natural Science
Foundation (Nos. 61308015 and 11474228), the Key Scientific and Technological In-
novation Team of Shaanxi Province (No. 2014KCT-10), the Natural Science Foun-
dation of Shaanxi province (No. 2014JQ8341), the Fundamental Research Funds for
the Central Universities (No. xjj2013089), and the National Priorities Research Pro-
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gram (projects No. 6-021-1-005 and 09-462-1-074) from the Qatar National Research
Fund (a member of the Qatar Foundation).

Last but not least, the coauthors would like to express sincere appreciation to
Prof. Song Jianping, Dr. Li Changbiao, Dr. Zheng Huaibin, Dr. Chen Haixia, Dr.
Wang Zhiguo, Dr. Wang Ruimin, Dr. Wu Zhenkun, Dr. Petrovi¢ Milan S, Dr. Wen
Feng, Dr. Zhang Zhaoyang, Mr. Liu Xing, Miss Zhong Hua, Prof. Lu Keqing, Prof.
Li Yuanyuan, and other scientists who generously helped us in obtaining research
results exposed in this book. We also express our gratitude to Prof. Xiao Min from
Arkansas University, Prof. Huang Tingwen from Texas A&M University at Qatar,
and Prof. Zhong Weiping from Shunde Polytechnic. Finally, special thanks go to
the Postdoctoral Office at Xi’an Jiaotong University, the China Postdoctoral Science
Foundation, and the Science Press.
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Chapter 1
BASIC THEORY

1.1 The paraxial wave equation

In the framework of classical electromagnetic theory, light is an electromagnetic
wave, which satisfies Maxwell’s equations. In SI units, Maxwell’s equations have the

form
OB
e FTE 1.1
V x E 5 (1.1)
oD

-—rvl ———— 1-2

VxH=J+ 5 (1.2)

V-D =p, (1.3)

V- B =0, (1.4)

where E, D, H, and B are the vectors of electric field, electric displacement, mag-
netic field, and magnetic flux, respectively. In a charge-free dielectric medium, the
electric charge density is p = 0 and the electric current density is J = 0. In non-
magnetic media, there are also constitutive relations

D =¢E + P, (1.6)

where P is the dielectric polarization, €y is the permittivity in vacuum, and pg is
the permeability in vacuum. Considering that the polarization can be divided into
a linear polarization Pp, and a nonlinear polarization Py, and using the relation
VxVxA=-V2A+V-A, one obtains the wave equation from Maxwell’s equations
2

VZEZ[J,()a

W(GOE"FPL‘]LPNL). (17)

Assuming that the light field is monochromatic and harmonic, i.e.,

E(:E, Y, 2, t) = E(E, vy, Z) exp(—iwt),
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Eq. (1.7) can be written as
V2E + w?uo (eoE + PL + Pn1) = 0. (1.8)

According to the spatial symmetry properties, the linear and nonlinear polarizations
can be expanded in a series

P =eox'VE,
Py =eo(x®|E* +x®|E[* +--)E.

If one defines

e=1+4+x
=1+ X(l) +X(3)|E|2 +X(5)|E{4 4o,

then Eq. (1.8) can be rewritten as
V2E + kin*E =0, (1.9)

where x(1) is the linear susceptibility, x(™ is the m** order nonlinear susceptibility,
ko =w/c, c= \/m is the light speed in vacuum, n = /€ is the refractive index
of the medium. Eq. (1.9) is known as the Helmholtz equation.

Assuming that the envelope of the light field v (z,y, 2) varies slowly along the
propagation direction z, i.e., adopting the slowly-varying envelope approximation [!

62
822| < ,
the light field can be written as
E= 1/)(9%3/,2) exp(ikz), (110>

where k = noko, and ng = n(x — oo, y — 00) is the background refractive index of
the medium. Plugging Eq. (1.10) into Eq. (1.9), one obtains

v

k
2 — —
15, + V w+n06mp 0, (1.11)

where V2 = 8%/0z? + 0?/0y? is the two-dimensional transverse Laplacian, and
dn = n —ng is the refractive index change. In Eq. (1.11), dn indicates the response
of the medium to light, and determines the linear/nonlinear type the medium(®. In
this manner, one obtains the paraxial wave equation — Eq. (1.11), the form of which
is the same as the Schrédinger equation in quantum mechanics!3.



Chapter 1 Basic Theory 3

If the susceptibility is small in a system, the refractive index change can be
approximately written as

1
o~ =x. (1.12)
2
Plugging Eq. (1.12) into Eq. (1.11), one obtains the wave equation used in atomic
vapors[4_7]
— 4+ — —x¥ =0. 1.13
B T2 T X" (113)

Eq. (1.11) is an equation with real physical quantities. However, for mathematical
ease, it is convenient to deal with dimensionless equations. Replacing , y, and z in
Eq. (1.11) with the dimensionless coordinates zrg, yro, and zkr2, one obtains the
dimensionless equation

oY

= +5 V21/)+ ’""a % =0, (1.14a)

in which 7 is the beam width, and kr? is known as the Rayleigh length. Sometimes,
2zkr? is used as the Rayleigh length, so that the dimensionless equation then reads

a‘p %3 vy 42k T°6 Y =0. (1.14b)

1.2 Susceptibilities in atomic vapors

Let us consider a close-cycled (n + 1)-level cascade system [, as shown in Fig. 1.1.
The transition from state |i — 1) to state [i) is driven by two laser fields E;(w, k1)
and E!(w, k}), with Rabi frequencies G; and G/, respectively. The Rabi frequencies
are defined as

Gi = E,‘p,”/h and G: = E,:Hq]/h,

where p;; is the transition dipole moment between levels |7) and |j). The fields E,
and E], (of the same frequency) propagate along beams 2 and 3, respectively, with
a small angle § between them (Figure 1.1(a)). The fields E>, E3 to E,_1 propagate
along the direction of beam 2, while a weak probe field E; (the beam 1) propagates
in the opposite direction to beam 2. The simultaneous interactions of the multi-level
atoms with fields E;, E; to E, will induce atomic coherence between states |0) and
[n) through the resonant n-photon transitions. This n-photon coherence is then
probed by the field E/ and, as a result, a 2n-wave mixing signal of frequency w; in
beam 4 is generated almost exactly opposite to the direction of beam 3, satisfying
the phase-matching condition ko, = k1 + kn — ki,.
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[n)

k’l! k’.!v T kﬂ " kl n—1) L
2 >X("" 1 }n_2> :’)nf'l
k“ ” "l) n-2

(a) (b)
Figure 1.1 (a) Schematic diagram for the phase-conjugate 2n-wave mixing process;

(b) Energy-level diagram for 2n-wave mixing in a close-cycled (n + 1)-level cascade system

Using the master equation for the evolution of this system, one can write (1

ap(t) 1 - - 3 2
—* = —[Ho+ H1(t),p(t)] — I"
ot ih[ o+ Ha(t), p(t)] P
where H; = —FEji is the dipole interaction Hamiltonian. Then, we can expand the

density operator p(t) and write
p(t) = PO + PV + 5P + -+ 5V + - (1.15)

By introducing this expansion into the initial master equation, the density-matrix
equation takes the form

d
ihf)_t [O@) + D)+ 5@+ 4+ 50 @) + -]
=[Ho + 1,50 (t) + 5D () + 5P + -+ 5O (1) + -]
—iCRO @) + -+ 5D (@) 4 -] (1.16)

Separating the density operator in Eq. (1.16) with the same order, one obtains a
series of equations

(11250 (t) = [Ho, p (1)] ~ T3 (1),

ih%ﬁ‘”(t) = [Ho, s ()] + [H1, 5O ()] — ihIpD (1),

< (1.17)
52 5 g A0 . 5D )] — ihs™
Then, one can find the series p(®, --- p(™) by solving the above equations step

by step (from the lower to the higher orders). According to the density-matrix
equations, one can write the above dynamic equations in the matrix form, with the
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matrices given by

[0 m 0 - 0 0]
g 0 gz - 0 0 E, 0 - 0
0 H2 0 2 0 0 % 0 E1 Op 0
p=1. . . .| Ho= : s
0 0 0 -+ 0 jpun 0 o -+ E,
[ 0 0 0 Pn O ]
G [
™ r r r r »
) = Pl.o p1.1 pll’" , Ip™ = wajm Fl?n F"»l.pl,n.
pCy P e PR Lop) Tnip®y -+ Taplh

For the diagonal element p;;, I'; represents the longitudinal relaxation rate. However,
for the off-diagonal element p;;, I3; is the transverse relaxation rate. p; is the
transition dipole moment. Then, the dynamic equation can be written as

[Ho, 5]
=Hop"” — p") Ho
0 PS5 (Bo— E1) -+ p)(Eo — En)
| A (B - Eo) 0 o pUN(Br — Ey)
") By~ Eo) pC\(En—Ey) - 0
pn—l,O( n—1 0) pn,l( n 1)

(Hy, 5]
= — E[fi1, )" V] = —E[ap7 Y — prV fuy]

r—1 £—1 —1 r—1
(<o +0557) P htn—1 40\
r—1 -1 r—1 r—1 r— r—
B G e L e TS TR e VT
g —35i) -1 —=1
_pgl )#1+P$Lr—1,2)l‘n (—Pslin-)1+P$lr—2,)rz) Hn

According to the equation

. a ~(r ] ~ ] ~A(r— . ~
iho o (t) = [Ho, A7) (9] + (B, 6V (0] = R L3557 (1),

one obtains
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( Op1o

1
ot~ inlPoEr— Fo) = E(—p1p11 + papoo + p2p20)] = Tropio,
0, 1
5?0 = fplP20(B2 — Eo) — E(—p1p21 + p2pio + p3pso)| — T20p20,
< ap'n—l 0 1
ot T ﬁ[pn—l,O(En_l o EO) B E(_I‘Llpn-—l,l + Un—1Ppn-2,0 + ann,o)]
— 4Ln—-1,0Pn—1,0,
0 1
\ ‘52'0 = fleno(En = Bo) = E(—p1pn,1 + tnpn-1,0)] = Inopno:

As an example of this general description, we now consider a five-level folded
atomic system, as shown in Fig. 1.2.

y 5D;/,4)
5Dy5[2) y \
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1
5y al0) —L—Y

Figure 1.2 Energy-level diagram of a close-cycled (folded) five-level atomic system

Based on the above derivation, the density-matrix equations are

' % :%[pw(El — Eo) — E(p1poo + p2p20 — p1p11)] — Topro,
; % =%[P20(E2 — Ep) — E(p2p10 + p3p3o — p1p21)] — I2op2o, s
% =%[P30(E3 — Eo) — E(uzp20 + papao — papa1)] — Isopso, .
\ % :%[p‘m(ﬂ‘ — Eo) — E(papso — p1par)] — Laopao-

In the bare-state picture, the equations of motion for the atomic polarizations
and populations (atomic responses) are considered up to different orders of Liou-
ville pathways that provide a diagrammatic representation to designate the time
evolution of the density matrix of the system [¥!. Thus, we can employ perturbation
theory to calculate the density-matrix elements. In this five-level system, the pertur-
bation chains (i.e. Liouville pathways within the perturbation theory) are written



