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Preface

Mathematics is one of the most important and wide applied science. Calculus is the
branch of mathematics which studies the change of quantities. Modern calculus was de-
veloped in 17th century Europe by Newton and Leibniz. It is one of the most fundamen-
tal and well studied branch of mathematics. Calculus has comprehensive application in
Engineering, economics, business and social and life sciences. Calculus is a part of the
modern mathematics education and is important to the students for their future career
pursuing.

There are a lot of excellent calculus text books in Chinese which are suitable for the
newly college students major in engineering, economics and so on. The authors of this
book are very experienced in teaching college calculus, especially in teaching in English
for classy students and oversea students. The authors had some trouble in finding a suit-
able text book in English. Although there are some famous and popular calculus text-
books in English, but because of the uniqueness of our education system, none of them
fits our requirement. The publishment of this book will fill in this blank.

This book is dedicate to college freshmen major in engineering, business, economic
and so on. It can also be used as a reference for technicians. Some of the key features of
this book are:

1. Abundant theories. This book not only contains necessary theories for students of
technology, but also contains some classic theories of mathematical analysis for science
students. It gives the students more solid foundation of mathematics.

2. Comprehensive examples and exercises. This book contains plentiful of examples
and exercises. The examples and exercises are carefully graded, progressing from basic
conceptual exercises and skill -development problems to more challenging problems in-
volving applications and proofs. Many of the exercises and examples are related to real—

world phenomena.



3. Easy to look up. This book is well organised and easy to look up for theories, it
can be used as a reference.

During the preparation of this book, a lot of people gave us a great deal of help.
Our colleagues who are all very experienced gave us a lot of helpful suggestions, the edi-
tors offered us a lot of assistance. Great thanks to all of these people who helped us to

make this book possible.

Authors
January 15th, 2016
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Chapter 8 Differential Calculus of
Multivariable Functions

Functions with two or more independent variables appear more often in science than
functions of a single variable. In this chapter we extend the basic ideas of one variable
differential calculus to such functions. With functions of several independent variables,
we work with partial derivatives, which, in turn, give rise to directional derivatives and
the gradient, some fundamental concepts in calculus. Partial derivatives allow us to find
maximum and minimum values of multivariable functions. We define tangent planes,

rather than tangent lines, that allow us to make linear approximations.

8.1 Limits and Continuity of Multivariable Functions

8.1.1 The n -Dimensional Space

If we introduce the rectangular coordinate system in space, then we have a one-to-
one correspondence between points P in space and ordered triples (x,y,z) . The set of
all points described by the triples (x,y,z) is called the three-dimensional space. We
denote this space by R’. Generally, we can consider an ordered n -tuple of real numbers
(%, ,%,,*,x,) for any integer n = 1. Such an n -tuple is called an n -dimensional
point, the individual numbers x,,x,,-:-,x, being referred to as coordinates or compo-
nents of the point. The set of all n -dimensional points is called the n -dimensional
space. We denote this space by R" . We shall usually denote points by capital letters A,
B,C,--- , and components by the corresponding small letters a,b,c,---

The familiar formula for the distance between two points in R’ is easily extended to

the n -dimentional formula. The distance p(A,B) between the points A(a, ,a,,*,a,)

and B(b,,b,,---,b,) inR" is
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p(A,B)=./(a, =b)* + (a, = b,)* + - + (a, - b,)°
Let P, € R"and§ > 0, a set {P\p(P,PO) <8,P ¢ R"} is called ad -neighbor-
hood of the point P, denoted by Us;(P,) or U(P,,5) . If we don’t care about the size
of § , we often use “neighborhood” instead of “ & -neighborhood” of P,, denoted by
U(P;) -

A point P, in a set £ in R" is an interior point of E if there exists a number § > 0

such that the § -neighborhood U,( P, ) lies entirely in E . A point P, is a boundary point
of E if every & -neighborhood Us(P,) contains points that lie outside of E as well as
points that lie in £ (Fig. 8.1). An interior point is necessarily a point of £ . A bounda-
ry point of E needs not belong to E .

The interior points of a set make up the interior of N
Boundary - Lol i

the set. The set’s boundary points make up its boundary. point
A set is open if it consists entirely of interior points. A set

is closed if it contains all of its boundary points. A set is

connected if every point can be connected to every other =~ e lr;)tg{:t)r
point by a smooth curve that lies entirely in the set. A =
connected open set is called an open region. The union of Fig. 8.1

an open region and its boundary is called a closed region.
A region in R" is bounded if it lies inside a neighborhood of fixed radius. A region

is unbounded if it is not bounded. For example, the set {(x,y,2) |2 + y2 +272 <1}

is a bounded region in R’ , but the set {(x,y) |x + y > 0} is an unbounded region in
R’.

8.1.2 Functions of Several Variables

Many functions depend on more than one independent variable. The volume V of a
right circular cylinder depends on its radius r and its height A . In fact, we know that
V = wr’h. The temperature T at a point on the surface of the earth depends on the longi-
tude x and latitude y of the point and on the time ¢ , so we could write T =f(x,y,t) .

Definition 8.1 (Functions of Two Variables) A function fof two variables is a
rule that assigns to each ordered pair of real numbers (x,y) in a set D a unique real

number z , denoted by
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z =f(x,y),(x,y) € D

where x and y are called the independent variables and z is called the dependent varia-

ble. The set D is the domain of fand its range is the set of the values that f'takes on, that
is, {f(x,y) | (x,y) e D} -

In general, a function f of n variables is a rule that assigns to each n -tuple (x,,
%,,**,%,) of real numbers a unique real number u =f(x, ,x,,---,x,) . The variables x,
to x, are the independent variables and u is the dependent variable.

As with functions of one variable, a function of several variables may have a do-
main that is restricted by the context of the problem. For example, if the independent
variables correspond to price or length or population, they take only nonnegative values,
even though the associated function may be defined for negative values of the variables.

If not stated otherwise, the domain D is the set of points for which the function is de-
fined.

Example 1 The domain of the function z = In(x + y) is
{(x,y) |x +y > 0} , which is the set of the points that lie
above the line y =— x . The domain is an unbounded open re-
gion in R* (Fig. 8.2).
Example 2 The domain of the function z =
2% —x° — Zz . x+y=()\.'i

1S

{(x, ) |[(x-1)* +y <1, 2% +9* > 1}
which is the set of the points on or within the circle (x — 1)* + 3> = 1 and outside the
circle > + y* = 1. The domain is a bounded set in R* (Fig. 8.3).
Example 3 The domain of the function u = m +aresin(a” +y* +2°)
is
{(x,7,2) |2 +y¥ <z, 2> +y* + 2 < 1}
which is the set of the points that lie on or above the paraboloid z = x* + y* and on or

within the sphere x* + y* + z° = 1. The domain is a bounded closed region in R® ( Fig.
8.4).
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Hg 8.3 Fig. 8.4
The graph of a function fof two variables is the set of points (x,v,z) that satisfy the
equation z =f(x,y) 1. e. the surfacez=f(x,y) . But for functions of three or more inde-

pendent variables, no geometric picture is available.
8.1.3 Limits and Continuity

This subsection deals with limits and continuity for multivariable functions. There
are a number of differences between the calculus of one and two variables. However, the
calculus of functions of three or more variables differs only slightly from that of functions
of two variables. The study here will be limited largely to functions of two variables.

The following definition of limit for functions of two variables is analogous to the
limit definition for functions of one variable.

Definition 8. 2 Let f be a function of two variables whose domain D includes
points arbitrarily close to Py(x,,y,) . Then we say that the limit of f(x,y) as P(x,y)

approaches P,(x,,y,) is A and we write

lim ,f(x,y)=llirpf(P)=A

(,5) — (%0,

if for every number £ > 0, there is a corresponding number § > 0 such that
flx,y) —Al< &
whenever (x,y) € Dand0 < p(P,P,) = \/(x —x)  + (y —y,)% <8.
Other notations for the limit in Definition 8.2 are

limf(z,y) =4 and flz,y) —>Aas (2,5) = (%0,5)

Y0

Example 4 Prove that lim (x* +y*)sin 1 0.
(x.9)—(0,0) xy

Solution Let & > O be given. We want to find § > 0 such that
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(x2+y2)sinxl—y_0'<g whenever 0 < /x* +y° <86 (xy #0)

But

(«° +y2)sinxl—y —0l= (x> +9°)

e | 2 2
sin—|<x +y
xy

Thus, if we choose § =/ and let0 < /x> +y* <8 (xy #0), then

(« +y2)sinxl—y—0|$x2 +y <8 =¢

Thus, by Definition 8.2

(,,,-%i—l.l(lo,m(xz + 5" )sin xl—y =0

The condition p(P,P,) < & in Definition 8.2 means that the distance between P(x,y)
and Py(x,,y,) is less than § as P approaches P, from all possible directions. Therefore,
the limit exists only if f(x,y) approaches A as P approaches P, along all possible paths in
the domain of f. Thus, if we can find two different paths of approach along which the

function f( x,y) has different limits, then it follows that ( )lir(n )f(x, y) does not exist.
x,yY)—(x0,Y0

2
. x ;
Example 5  Show that lim —2—L4 does not exist.
(x,y)—(0,0) x° + Y

2
Solution Let f(x,y) = TxL4 . First let (x,y) — (0,0) along any nonvertical
%ty
line through the origin. Then y = kx , where £ is the slope, and

~ _ x (kx)? _ Kx
f(x,y) =f(x,kx) T+ (k) 1+ K

So
lim f(x,y) = lim f(x,kx) —lim—E%__ _¢
(2,5)—(0,0) ¢ 20 2 —0 1 + k*a?
y=kx

We now let (x,y) — (0,0) along the y -axis. Thenx =0 and f(0,y) =0. So
lim f(x,y)=1ygf(0,y)=lyg510=0

(%,)(0,0)
%=0
Thus, we have obtained identical limits along every lines through the origin. But that
does not show that the given limit is 0. If we now let (x,y) — (0,0) along the parabola

2
x =y", then we have
3 2

fx,5) =f(5",) =—%-L4=L
(y¥) +y 2
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So

lim f(x,y) =lim f(5? ) = lim =5

(x,5)—(0,0)
x= )2

Since different paths lead to different limiting values, the given limit does not exist.
Just as for functions of one variable, the calculation of limits for functions of two
(or more) variables can be greatly simplified by the use of properties of limits. The lim-
it laws for functions of one variable can be extended to functions of two ( or more) varia-
bles. The limit of a sum is the sum of the limits, the limit of a product is the product of

the limits, and so on. The Squeeze Theorem also holds.

Example 6 limm=limy . M:a ‘1l=a
x—0 w x—0 xy
y—a y—a
2
Example 7  Evaluate hm _Zx;% .
Aty -y
X

Solution  We use polar coordinates to find this limit. Letx =rcos 8,y =rsin 6.

Then (x,y) — (0,0) is equivalent to r — 0 and

2

2xy _ 2rcos @ sin’g

w2+ y2 - y4 1 - 7 sin*g

. 2rcos 0 sin’@ 2r .
Since — 7 sin'd < 17 (0 <r<1)and 1,5511 — =0, by the Squeeze
Theorem we have
o 29cz2 = lim 2rcos  sin’@ -0
xjx +y —y r—'Ol—r sin*@
T

The definition of continuity for functions of two variables is essentially the same as
for functions of one variable.

Definition 8.3 Let fbe a function of two variables and assume that fis defined at
the point Py(x,,,) and there are points P(x,y) in the domain of f arbitrarily close to
(%9,Y0) - Then fis continuous at (x,,y,) if

lim  f(x,y) =f(2,,%)

(x,5)—(=0,70)
If we write Az =f(P) - f(P,) andp =p(P,P,) , then the function z =f( P) being
continuous at Py(x,,y,) is equivalent to
lim Az =0
p—0

We say that fis continuous on a set E if fis continuous at each point of E . A func-
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tion fis continuous if it is continuous at every point of its domain.

The intuitive meaning of continuity is that if the point (x,y) changes by a small
amount , then the value of f(x,y) changes by a small amount. This means that a surface
that is the graph of a continuous function has no hole or break.

Just as for functions of one variable, the sums, differences, products, quotients,
and compositions of continuous functions of two (or more) variables are continuous on
their domains.

A function of several variables built from a finite number of basic elementary func-
tions of each independent variable through combinations and compositions, which may
be represented by a single formula, is called an elementary function of several variables.

Elementary functions of several variables are continuous on the interior of its domain.

. B xy . . .
For example, the function f(x,y) = i - > 1s continuous on R’; the function f(x,
+55 4y

2

y)__xL

. . . . 1 .
= 7 is continuous except at (0,0) ; the function f(x,y) = sin ———— is
x+y 1 -a" -y

continuous except on the circle x° + 7% = 1.

Example 8 Determine the points at which the following function

2 2\ 5
f(x’y):{<1 +x +}’)"*y2,(x,9’) 7&(070>
e, (x,y) =(0,0)
is continuous.
Solution  The function f is continuous at any point (x,y) # (0,0) since it is

equal to an elementary function there. Also, we have

I
i = I 1 +2° +y°)22 =e =£(0,0
oo fla,y) = lim (1 +2" +y7)752 =e=£(0,0)
Therefore, fis continuous at (0,0) , and so it is continuous on R>.

Example 9  Where is the following function

2 (x, 0,0
flx,y) ={a* +9° () #(0,0)
0, (x,y) =(0,0)

continuous?

Solution  The function fis continuous for (x,y) # (0,0) because it is equal to

an elementary function there.
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At (0,0) , the value of fis defined, but f has no limit as (x,y) — (0,0) . In
fact, for every value of k& , if we let (x,y) — (0,0) along the line y =kx , then we have

: o e x(kx)  k
(x,yl)l‘r’zo.off(x,y) - !‘lj’gf(x,kx) - !tl—{g x2 - (kx)z - 1 + kz
B
This limit changes with k , so the limit( %irr(no . f(x,y) fails to exist, and the func-
z,y)—(U,

tion f is not continuous at (0,0) .

Therefore, fis continuous on R” except (0,0) .

Continuous functions of several variables on closed bounded sets have the following
important properties :

1. If a function is continuous on a closed bounded set, then it attains an absolute
maximum value and an absolute minimum value at some points in that set.

2. If a function is continuous on a closed bounded set, then it must take all values

between its absolute minimum and absolute maximum values on that set.

8.2 Partial Derivatives and Higher-Order
Partial Derivatives

8.2.1 Partial Derivatives

Derivatives may be defined for functions of several variables with respect to any of
the independent variables. The resulting derivatives are called partial derivatives.

If fis a function of two variables x and y , suppose that we let only x vary while
keeping y fixed, say y = y,, where y, is a constant. If the function of one variable x ,
namely, g(x) =f(x,y,) , has a derivative at x,, then by the definition of a derivative,

we have

g} = lim g(x, + Ax) — g(%,) _ limf(xo + Ax,5) = f(%,50)
Ax—0 Ax Ax—0 Ax
We define the partial derivative of f with respect to x at the point (%,,Y,) as the ordinary
derivative of g at x,.
Definition 8.4  The partial derivative of f with respect to x at the point (x,,7,)

’

denoted by /' (x,,7,) , is
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fxy + Ax,5) = f(%,%0)
Ax

S (%0,%) = l:ino

provided this limit exists.
Similarly, the partial derivative of f with respect to y at the point (x,,y,) , denoted
by f',(%4,5,) , is defined by

S(xy,50 + Ay) = %5.,¥a)
Ay

fy(xO’yO) = 1;‘113)

provided this limit exists.

If we now let the point (x,,y,) vary, thenf andf become functions of two varia-
bles.

Definition 8.5 (Partial Derivative Functions) If fis a function of two varia-

bles, its partial derivatives are the functions f', and f', defined by

f(x +Ax,)’) _f(x’y)
Ax

f(xa.y + A}’) —f(x,}’)
Ay

fz(x’y) =k—n’$

I (%,7) =E_“},

provided these limits exist.
The partial derivative of f with respect to x at the point (%,,y,) is the value of the
function ' (x,y) at (x,,y,) , that is

S (x0,50) =f (2,7) |

There are many alternative notations for partial derivatives. If z = f(x,y) , we write

it _of _9z_29
fx(xsy)_zx_f’l(xvy)_ax_ax_axf(xiy)

(x0,70)

Fey) =2, =faep) =L = 8= Tpay)

In general, if u is a function of n variables, u =f(x, ,x,,-,x,) , its partial deriva-

tives with respect to the ith variable x; is

ou _ T Sy o By o + B 20 0 8, ) — % sy 57 5%, )
0x;  Ax0 Ax;

All the rules and results for ordinary derivatives can be used to compute partial de-
rivatives. Specifically, to compute /' (x,y) , we treat y as a constant and take an ordi-

nary derivative with respect to x . Similarly, to compute ' (x,y) , we treat x as a con-

stant and take an ordinary derivative with respect to y .
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Example 1  Find the two partial derivatives of the function z = x>y + sin y at the
point (1,0) .

Solution  Holding y constant and differentiating with respect to x , we get

g—; = (%C(xzy + sin y) = 2xy
and so
L = 2xy =0
0x (1,0) ;z(l)
Holding x constant and differentiating with respect to y , we get
3—; = aa—y(xzy +siny) =x" + cos y
and so
0z  f2 =
e =(x" + cos y) =2
Y | (1.0 w1

=0

Example 2  Find the three partial derivatives of the function f(x,y,z) = (z -
e” )sin In x” at the point (1,0,2) .

Solution It is simpler to calculate the partial derivatives as follows

d

_d a
‘f’x(l’o’z)_dxf(x’o’z) x=1 _dx

(sin In &%)

2 2
x=1 =008 Inx"| _ =2

.
f,v(1,0,2)—d}f(1,y,2)

d
20 = 3,(0) ] =0

_d
fz(l,O,Z)—dzf(l,O,z)

d
z=2 =$(0) z=2 =0

Example 3 Findgandgifz=x"( x >0).
0x ay
Solution The two partial derivatives are

ge yx' ! ,g =x"ln x

ox
Example 4

If resistors of R, , R, and R, ohms are connected in parallel to make an
R -ohm resistor, the value of R can be found from the equation

1 1,1
R R, "R,

_1,
-1

Find the value of

;g when R, = 30,R, =45 and R, = 90 ohms.

2




