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To my wife Sanja and to my mentor Drago$, both of whom, indepen-
dently of each other, forced me to write this book



The aim of this book is to provide an overview of important developments
on the spectral radius A; of adjacency matrix of simple graphs, obtained
in the last 10 years or so. Most of the presented results are related to
the Brualdi-Solheid problem [24], which asks to characterize graphs with
extremal values of the spectral radius in a given class of graphs. As a careful
reader will easily find out, this usually means characterizing graphs with
the maximum spectral radius—prevailing reason being that the Rayleigh
quotient, the basic building block of most proofs, allows one to check
whether the spectral radius has increased after transforming a graph, but not
whether it has decreased. Despite the scarcity of lemmas on the decrease of
the spectral radius, increase of interest in graphs with the minimum spectral
radius is motivated by the recently discovered relation [156]
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between the epidemic threshold . for the effective infection rate of a SIS-
type network infection and the network’s spectral radius. As the network
becomes virus-free in the steady state if the effective infection rate is
smaller than 7, the task of constructing a more resistant network obviously
translates to the task of constructing a network with A; as small as possible,
giving impetus to the minimum part of the Brualdi-Solheid problem.

The book is primarily intended for a fellow research mathematician,
aiming to make new contributions to the spectral radius of graphs. The
focus of presentation is not only on the overview of recent results, but
also on proof techniques, conjectures, and open problems. For the impatient
reader, perhaps the best starting points are the entries “conjecture” and
“open problem” in the index at the end of the book. Otherwise, Chapter 2
is devoted to the study of properties of the components of the principal
eigenvector corresponding to A; that will be used in several occasions later
in the book. Chapters 3 and 4 deal with the instances of the Brualdi-Solheid
problem. Chapter 3 presents the results on the spectral radius of graphs
belonging to standard graph classes, such as graphs with a given degree
sequence or planar graphs. On the other hand, graph classes in Chapter 4
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are mostly defined as the set of graphs having the same value of an integer-
valued graph invariant, such as the diameter or the domination number.

The book is reasonably self-contained, with necessary preliminary results
collected in a short, introductory chapter, but do note that it assumes some
prior familiarity with graph theory (more) and linear algebra (less). It could
be used in teaching, as part of a beginning graduate course or an advanced
undergraduate course, including also courses within the research experience
for undergraduates programs, but do also note that it lacks exercises (unless
you treat conjectures and open problems as exercises).

I hope it is understandable that in a book of this size, one cannot possibly
cover all the interesting new developments in the theory of graph spectra
(and not even everything that has been published on the spectral radius
of graphs!) in the last 10 years or so. For the reader looking forward to
expand his/her knowledge of graph spectra, some further reading may be
suggested. Results on the spectral properties of directed graphs are well
covered in a survey paper by Brualdi [22]. Nikiforov has surveyed his results
on extremal spectral graph theory [114], although some of his results are
covered here as well. Results on the spectral radius of weighted graphs
are more oriented toward the spectral theory of nonnegative matrices than
to graph theory; the reader is, thus, referred to Chapter 6 of Friedland’s
manuscript on matrices [63]. If the reader is looking for a textbook covering
a wider array of topics in spectral graph theory, then good choices are the
books by Cvetkovi¢ et al. [47], by Van Mieghem [155], or by Brouwer and
Haemers [21].

At the end, I would like to acknowledge kind hospitality of the Max
Planck Institute for Mathematics in Sciences in Leipzig during the final
stages of writing this book. I am grateful to Tiirker Biyikoglu, Josef Leydold,
Sebastian Cioaba, and Kelly Thomas for permissions to use some of the
proofs from [17, 31, 33, 64] without significant change. I am also very
much grateful to my family—Sanja, Djordje, and Milica—for all their love,
support, and patience while this book was being materialized from an idea
to a reality.

Dragan Stevanovi¢
Ni§ & Leipzig, June 2014
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Introduction

This short, introductory chapter contains definitions and tools necessary to
follow the results presented in the forthcoming chapters. We will cover
various graph notions and invariants, adjacency matrix, its eigenvalues and
its characteristic polynomial, and some standard matrix theory tools that will
be used later in proofs.

1.1 GRAPHS AND THEIR INVARIANTS

A simple graph is the pair G = (V, E) consisting of the vertex set V' with
n = |V] vertices and the edge set E C (ZV) with m = |E| edges. Often
in the literature, n is called the order and m the size of G. Simple graphs
contain neither directed nor parallel edges, so that an edge e € E may be
identified with the pair {u, v} of its distinct endvertices u,v € V. We will
write shortly uv for the set {u, v}. We will also use V(G) and E(G) to denote
the vertex set and the edge set of G, if they have not been named already. To
simplify notation, we will omit graph name (usually G), whenever it can be

understood from the context.
For a vertex u € V, the set of its neighbors in G is denoted as
N,={veV:uveeE}

The degree of u is the number of its neighbors, i.e., deg, = |Ny|. The
maximum vertex degree A and the minimum vertex degree § for G are
defined as

A = maxdeg,, § = mindeg, .
ueV ueV

Graph G is said to be d-regular graph, or just regular, if all of its vertices

have degree equal to d.

A sequence W: u = wugy,uy,...,u; = v of vertices from ¥V such that
uiuir1 € E, i = 0,...,k— 1, is called a walk between u and v in G of
length k. Two vertices u,v € V are connected in G if there exists a walk
between them in G, and the whole graph G is connected if there exists a
walk between any two of its vertices.

Spectral Radius of Graphs. http://dx.doi.org/10.1016/B978-0-12-802068-5.00001-4
Copyright © 2015 Elsevier Inc. All rights reserved. 1



2 Spectral Radius of Graphs

The distance d(u, v) between two vertices «, v of a connected graph G is
the length of the shortest walk between u and v in G. The eccentricity ecc,,
of a vertex u € V is the maximum distance from u to other vertices of G, i.e.,

ecc, = maxd(u,v).
veV

The diameter D and the radius » of G are then defined as

D = max eccy, ¥ = min eccy,.
ueV ueV

Graph H = (V',E’) is a subgraph of G = (V,E) if V' C Vand E' C E. If
V' = V, we say that H is the spanning subgrah of G. On the other hand, if
E = (';/) N E, i.e., if H contains all edges of G whose both endpoints are
in H, we say that H is the induced subgraph of G. If U is a subset of vertices
of G = (V,E), we will use G — U (or just G — u if U = {u}) to denote the
subgraph of G induced by V'\ U. If F is a subset of edges of G, we will use
G — F (or just G — e if F = {e}) to denote the subgraph (V,E \ F).

A subset C € V is said to be a clique in G if uv € E holds for any
two distinct vertices u,v € C. The clique number w of G is the maximum
cardinality of a clique in G.

A subset S C Vis said to be an independent set in G if uv ¢ E holds for
any two distinct vertices u,v € S. The independence number « of G is the
maximum cardinality of an independent set in G.

A function f: V' — Z, for arbitrary set Z, is said to be a coloring
of G if flu) # f(v) whenever uv € E. The chromatic number y is the
smallest cardinality of a set Z for which there exists a coloring f: V' — Z.
Alternatively, as f~ 2,z € Z is necessarily an independent set, the
chromatic number x may be equivalently defined as the smallest number
of parts into which ¥ can be partitioned such that any two adjacent vertices
belong to distinct parts.

A set D of vertices of a graph G is a dominating set if every vertex
of V(G) \ D is adjacent to a vertex of S. The domination number y of G
is the minimum cardinality of a dominating set in G.

A set M of disjoint edges of G is a matching in G. The matching number v
of G is the maximum cardinality of a matching in G.

Given two graphs G = (V,E) and G’ = (V',E’), the function f: V' — V'
is an isomorphism between G and G’ if f'is bijection and for each u,v € V
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holds {u,v} € E if and only if { f{u),f(v)} € E'. If there is an isomorphism
between G and G, we say that G and G’ are isomorphic and denote it as
G = G'. In case G and G’ are the one and the same graph, then we have an
automorphism.

Further, a function i: G — R is a graph invariant if i(G) = i(G’) holds
whenever G = G'. In other words, the value of i depends on the structure of
a graph, and not on the way its vertices are labeled. All the values mentioned
above

n,m, A, 8,D,r,w,0, X, Y,V

are examples of graph invariants. Graph theory, actually, represents a study
of graph invariants and in this book the focus will be on yet another graph
invariant—the spectral radius of a graph, which is defined in the next
section.

We will now define several types of graphs that will appear throughout
the book. The path P, has vertices 1, ...,n and edges of the form {i,7 + 1}
fori = 1,...,n— 1. The cycle C,, is the graph obtained from P, by adding
edge {n, 1} to it. The complete graph K,, has vertices 1,...,n and contains
all edges ij for 1 < i < j < n. The complete bipartite graph K}, ,, consists
of two disjoint sets of vertices V7, |V1| = ny, and V3, |V2| = na, and all
edges vivy forv) € V) and vy € V5. The star S, is a shortcut for the complete
bipartite graph K ,—1. The complete multipartite graph Ky, ., consists of
disjoint sets of vertices V;, |Vi| = n;,i = 1,...,p, and all edges v;v;, v; € V;,
v; € Vj, for i # j. The Turén graph Ty, = Kyu/pl,...[n/plln/pls.sln/p) 18
the (p + 1)-clique-free graph with the maximum number of edges [151].
The complete split graph CS,,, = K,_,1.....1 consists of an independent set
of n — p vertices and a clique of p vertices, such that each vertex of the
independent set is adjacent to each vertex of the clique.

The coalescence G - H of two graphs G and H with disjoint vertex sets is
obtained by selecting a vertex « in G and a vertex v in / and then identifying
u and v. The kite KP;, is a coalescence of the complete graph K and the
path P,, where one endpoint of P, is identified with an arbitrary vertex of K.
The lollipop CP;, is a coalescence of the cycle Cs and the path P,, where one
endpoint of P, is identified with an arbitrary vertex of C;. The bug Bugy 4, 4,
is obtained from the complete graph K, by deleting its edge uv, and then by
identifying # with an endpoint of P, and v with an endpoint of Pg,. The
bag Bag, , is obtained from the complete graph K, by replacing its edge uv
with a path P,. The pineapple PA,, 4 is a graph with n vertices consisting of a
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Figure 1.1 Examples of graph drawings.

clique on g vertices and an independent set on the remaining n — g vertices,
such that each vertex of the independent set is adjacent to the same clique
vertex.

The complement of a graph G = (V, E) is the graph G= (V, (5’) \E)’

so that each pair {u, v}, u # v, appears as an edge in exactly one of G and G.
Further, for two graphs G = (V,E) and G' = (V',E’), their union G U
G’ is a graph with the vertex set VU ¥’ and the edge set EU E'. kG is a
shortcut for GUGU --- U G. The join G v G’ of two graphs G = (V,E)

k
and G’ = (V',E') is a graph with the vertex set ¥ U ¥’ and the edge set

EUE U{st: seV,teV'}).

Graphs are often depicted as drawings in which vertices are represented
as points (actually, as circles with small diameter), and edges between
them as simple curves (most often, as straight segments). Examples of such
drawings are given in Fig. 1.1.

For other undefined notions, and for further study of the basics of graph
theory, the reader is referred to [50], a modern “classical” textbook in graph
theory.

1.2 ADJACENCY MATRIX, ITS EIGENVALUES, AND ITS
CHARACTERISTIC POLYNOMIAL

The adjacency matrix of G = (V, E) is the n x n matrix 4 indexed by V,
whose (u, v)-entry is defined as
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A = 1 ifuv € E,
W0 ifuv ¢ E.

Recall that a matrix is said to be reducible if it can be transformed to the

form
A B
A = [0 A/l] ’

where A" and A” are square matrices, by simultaneous row/column per-
mutations. Otherwise, 4 is said to be irreducible. It is easy to see that the
adjacency matrix A4 is irreducible if and only if G is a connected graph.

Adjacency matrix is closely related to the numbers of walks between
vertices of G. Namely,

Theorem 1.1. The number of walks of length k, k > 0, between vertices
uandv in G is equal to (Ak)u,v.

Proof. By induction on . For k = 0, the unit matrix A” = I has entries
1 and 0, equal to the numbers of walks of length 0, as these are the walks
which consist of a single vertex only (so 1s for the diagonal entries and Os
for nondiagonal entries).

Assume now that the inductive hypothesis holds for some k£ > 0. Any
walk of length & between u and v consists of an edge uz for some neighbor
z € N, and a walk of length £ — 1 between z and v, so that, by the inductive
hypothesis, the number of walks of length k£ between u and v is equal to

@ Ny =) A4, = (N,

zENy zeV

a

The adjacency matrix 4 is a real, symmetric matrix, so that 4 is
diagonalizable and has » real eigenvalues

A ZAy= 2 Ay

and n real, linearly independent, unit eigenvectors xi,x2,...,x, € R”
satisfying the eigenvalue equation

Ax,-:)»,x,-, i=1,...,n.
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The eigenvectors, in addition, can be chosen so as to form the orthonormal
basis of R”, i.e., such that x] x; = 0 for i # j.

The family of eigenvalues Aj,...,A, is the spectrum of G. The multi-
plicity of an eigenvalue A is the number of times it appears in the spectrum,
1.e., it is the dimension of the subspace of eigenvectors corresponding to A
(this subspace is also called the eigenspace of 1). An eigenvalue is simple if
its multiplicity is 1. The rank of a matrix is the maximum number of linearly
independent columns of 4. By the rank-nullity theorem [101, p. 199], the
rank of 4 is » minus the multiplicity of eigenvalue zero.

The eigenvalues and orthonormal eigenvectors provide the spectral
decomposition of 4:

n
A=Y ], (1.1)
i=1

It is easy to see why this holds: let B = 4 — Y%, Aix;x] . Due to x]xx = 0
for i # k, and x{xk = 1, we have that for each x;

n
Bxp = (4 — Z A,-x,-x;-r)xk = AMiXk — Akxkx{xk =0.

i=1
As B maps each basis vector to 0, we conclude that B = 0 holds.

Further, the entries of the adjacency matrix are Os and 1s only, so that for

uev,
Ax)y = Y (xiy-
veN,
Thus, the eigenvalue equation for i € {1,...,n} and u € V can also be
written as
hiGdu =) Gidve (1.2)
veNy,

One of important early properties of graph eigenvalues is their character-
ization of bipartiteness.

Theorem 1.2 ([128]). A connected graph is bipartite if and only if —\
is an eigenvalue of G, in which case the whole spectrum is symmetric with
respect to 0. If G is bipartite, then the eigenvector of —A| is obtained from
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its principal eigenvector by changing signs of the components in one part of
the bipartition.

See [53] for more details and further extensions of Sachs’ theorem.
The characteristic polynomial of G is the characteristic polynomial of 4:
P\ =detQ—A) = A"+ A" L+ 4 a,.

The eigenvalues of G are the roots of its characteristic polynomial Pg(A).
The coefficients of the characteristic polynomial count, in a way, appear-
ances of basic figures in G. An elementary figure is either an edge K, or
a cycle Cy, g > 3, and a basic figure is any graph whose all connected
components are elementary figures. Let p(U) and ¢(U) denote the number
of components and the number of cycles contained in a basic figure U. If
U, denotes the set all basic figures contained in G having exactly i vertices,
then, for 1 <i <n,

a= Y (-0,

Ue lU;

See, e.g., [43, p. 32] for the proof of this formula.

There are many formulas relating characteristic polynomial of a graph to
those of its special subgraphs. Two most often encountered ones concern cut
edges and coalescence.

Theorem 1.3 ([76]). If uv is a cut edge of a connected graph G and G
and G, are the connected components of G — uv, such that u belongs to G
and v belongs to G, then

PG(X) = PG, (MPg, () — PG, —u(A)Pg,—v(2).

Theorem 1.4 ([130]). If G - H is the coalescence of G and H obtained by
identifying a vertex u of G with a vertex v of H, then
Pe.a(A) = PG(A)PH-v(A) + PG—u(M)PH(A) — APG—u(AM)PH—y(R).
For further characteristic polynomial reduction formulas, see [47, Chap-

ter 2].

We list here the spectra of some of the graphs defined in the previous
section:
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» The path P, has eigenvalues 2 cos ;’%, i=0,...,n—1.Its characteristic
polynomial is U,(X/2), where

/2] "
Unx) = Z(—l)"( P )x"-z"
k=0

is the Chebyshev polynomial of the second kind;
» The cycle C, has eigenvalues 2 cos %, i=0,...,n—1.Its characteristic
polynomial is 27,,(A/2) — 2, where

n/2] k
_n (=D)"(n—k n—2k
Tux) = 3 Z n_k( . )(2x)

k=0

is the Chebyshev polynomial of the first kind;

* The complete graph K, has a simple eigenvalue n» — 1 and eigenvalue —1
of multiplicity » — 1. Hence, Px, (A) = (A —n+ 1)(A + Hr-1;

* The complete bipartite graph X,,, ,, has two simple eigenvalues +,/n1ny
and eigenvalue 0 of multiplicity » — 2. Hence, Pk, , (1) = (A% —
nlnz)A”_z.

The characteristic polynomials of some other graph types, such as kites,
lollipops, and bugs, can be obtained using Theorems 1.3 and 1.4. Never-
theless, their eigenvalues are not easily identifiable from their characteristic
polynomials.

1.3 SOME USEFUL TOOLS FROM MATRIX THEORY

The celebrated Perron-Frobenius theorem can be applied to adjacency
matrices of connected graphs.

Theorem 1.5 (The Perron-Frobenius theorem). An irreducible, nonneg-
ative n x n matrix A always has a real, positive eigenvalue A\, so that:

1) |Ail < Ay holds for all other (possibly complex) eigenvalues A;, i =
2,...,1,

2) A is a simple zero of the characteristic polynomial det(Al — A), and

3) the eigenvector x| corresponding to A1 has positive components.

In addition, if A has a total of h eigenvalues whose moduli are equal to A\,
then these eigenvalues are obtained by rotating ) for multiples of angle
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27 /h in the complex plane, i.e., these eigenvalues are equal to Alegﬂhl for
j=0,'--,h_ 1

For the proof of the Perron-Frobenius theorem see, e.g., [65, Chapter
X111].

Hence, the largest eigenvalue A; of the adjacency matrix 4 of connected
graph G is, at the same time, the spectral radius of 4. The corresponding
positive unit eigenvector x; is called the principal eigenvector of 4.

Note that the principal eigenvector is the only positive eigenvector of 4:
if we would suppose that x’ is another positive eigenvector of 4, then we
would have both x]x' = 0 due to orthogonality, and x]xX’ > 0 due to
positivity of components of both eigenvectors.

Another useful result concerns the Rayleigh quotient:

T
Ax
Al =supxT A (1.3)
x#0 X X
Let the eigenvalues of 4 be ordered as A; > --- > A,, and choose the

orthonormal basis x1,...,x, such that x; is the eigenvector corresponding
toA;, i = 1,...,n Hence, ifx = Z;’=1 aix;, then xTx; = «;, and from the
spectral decomposition (1.1) follows that

n T...T n 2 n 2

xTAx i M xixgx D oimg A - Do A
Ty T - n 2 = n 2
s - D1« 2im1%

i

="2.

Equality is attained above for x = x1, so that (1.3) holds.

As an immediate consequence of the Rayleigh quotient, we have that
addition of an edge e = wuv to connected graph G strictly increases its
spectral radius. Namely, if x is the principal eigenvector of G, then by (1.3)

X Ax + 2x,x,  x1Ax
>

MG +e) >
1( )=z xTx xTx

= 21(G). (1.4)

Of course, this also means that deletion of an edge from a connected graph
strictly decreases its spectral radius.

The Rayleigh quotient also enables the use of edge rotations and
switching in order to increase the spectral radius of a graph.



