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Preface

The readers of this book are the researchers and engineers who are interested in the
numerical methodology study, code implementation and engineering applications in
multidisciplinary problems. This book can also be used as a textbook for graduate
students and high level undergraduate students in mechanical engineering, automotive
engineering, aerospace engineering, civil engineering, biomechanical engineering,
and many other areas.

Research and engineering applications regarding multiphysics simulations have
been given great attention over the last decade. This book describes the basic prin-
ciples and methods for multiphysics modeling, covering related areas of physics, such
as structure mechanics, fluid dynamics, heat transfer, electromagnetic, and acoustics
fields. Although the fundamental equations for each and every physics model are pre-
sented in this book, the main focus will be on the coupling related terms and condi-
tions, as well as the nonlinearity and stabilization issues.

In this book, the coupling problems are classified into different categories, namely:
(1) essential coupling; (2) production term coupling; (3) natural boundary condition
coupling; (4) constitutive equation coupling; and (5) analysis domain coupling by
physical characteristics, which include strong coupling problems and weak coupling
problems, by the level of the coupling. All of the possible interface coupling condi-
tions and load transfer conditions among these five physics models are listed, and
the resulted coupled equations are presented. The Direct Matrix Assembly (DMA)
method, Direct Interface Coupling (DIC) method, Multipoint Constraint (MPC)
equation-based, Lagrangian Multiplier (LM) based and Penalty Method (PM) based
strong coupling methods are proposed for different types of strongly coupled prob-
lems. Background theories, algorithms, key technologies, and code implementation
for inter-solver weak coupling methods are also covered and discussed in details.

The challenges and important topics in multiphysics simulation are also presented:
the nonlinearities and numerical stabilization in spatial and time domain; multiphysics
simulation of rotating machinery; moving boundary problems for nonstructural phys-
ics models; parallel computing for large scale multiphysics simulation, etc.

This book systematically discusses about the multiphysics modeling among fluid,
structure, thermal, electromagnetic, and acoustics problems. The fundamental equa-
tions, numerical schemes as well as the strategies and procedures for code imple-
mentation are presented. Most of the technologies presented in this book have been
implemented in general purposed multiphysics simulation software INTESIM. More
than 20 valuable engineering applications in automotive, aerospace, MEMS device,
rotating machinery, and biomedical engineering etc. are presented in this book.
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Organization of chapters

In Chapter 1, we briefly review the fundamental equation for fluid dynamics, structure
mechanic, thermal, electromagnetic analysis, and acoustics. Special emphasis is put
on the coupling terms in each equation, as well as the discretization and stabilization
algorithm.

In Chapter 2, we clarify the coupling types and coupling characteristics among dif-
ferent physics models, and also review and discuss about appropriate coupling meth-
ods for different coupling problems.

In Chapter 3, we discuss about the coupling methods, which include the strong
coupling method, general weak coupling method and intersolver-based weak coupling
method.

The morphing and automatic re-meshing scheme is presented in Chapter 4 for the
nonstructural physics with moving boundary analysis and coupled physics simulation
with deformed structure.

The stabilization method in space and time domain to cope with the coupling non-
linearity and convergence issues in each physics model, are discussed in Chapter 5.

The multiphysics coupling problems of rotating machinery are addressed in
Chapter 6.

In Chapter 7, the parallel algorithm for strong and weak coupling methods is in-
troduced.

Three general fluid—structure interaction analyses will be presented in Chapter 8.

Multiphysics simulations in automotive engineering, aerospace engineering,
MEMS devices, turbine machinery and biomechanical engineering are presented in
Chapter 9, Chapter 10, Chapter 11, Chapter 12, and Chapter 13, respectively.

In Chapter 14, the FSI simulation of a sensor device used in civil engineering, and
an acoustic-structure coupling problem of a closed cube metal box are presented.

In Chapter 15, an overview of the commercial multiphysics software is given and
the features of code implementation for multiphysics coupling is presented.

This book covers five different physics fields, namely: fluid, structure, thermal,
electromagnetic, and acoustics fields. We tried our best to use common and consistent
styles of statement and symbols throughout this book to make it easy to read.

This is the first edition of the book. Due to the wide coverage of the book and
limitation of our knowledge, if you find any mistakes and errors in this edition, please
kindly give us the feedback. We will appreciate your tolerance and efforts and correct
them in the next edition.
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1.1 Heat flow fundamentals

1.1.1 Basic equations

The solution for heat flow analysis is to find the temperature distribution T(X,?) € S,,
so that the following governing Equation (1.1) is satisfied.

ope,T) 2 o |_F . o
_ Tv.—k— |=q", in Q 1.1
o, [" e axv] ke e

i

The primary variable is temperature 7 in the infinite-dimensional space of &7 The
first part on the left-hand side of Equation (1.1) is the time derivative term, the second
term is the convection term caused by fluid flow, and the third term is the diffusion
term. The source term of heat generation is on the right-hand side of Equation (1.1).

The material properties needed to be decided are; mass density, p; specific heat,
¢,; and thermal conductivity, k. For fully incompressible flow, p is assumed to be
constant, but for slightly compressible and low-speed compressible flow, we assume
p=p(p)and p= p(p, T), respectively. Also, we assume specific heat ¢, and conductiv-
ity k to be either constant or a function of temperature. v is the convective velocity,
and ¢” is the heat generation from other physics models in multiphysics simulation.

Remark 1.1: g% is the source term of heat generation that may come from thermo-
elastic damping, fluid viscous heat, or electro or electromagnetic heat in multiphysics
simulation. On the other hand, temperature 7" as output may affect the material proper-
ties or other quantities of the corresponding physics models.

Symbol T indicates the value that is received from other physics model, and
represents the value transferred to other physics model in multiphysics simulation.
Symbol " means the value can be either sent out to or received from other physics
model in multiphysics simulation.

1.1.2 Boundary conditions

Three types of boundary conditions are considered:

1. Specified temperature on I',:

Here, T" is the specified temperature.
2. Specified heat flow on T

=c? on T

1.3
(@x) Y

where, g" is the specified heat flow and n, is the component of the unit normal direction .
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Remark 1.2: The boundary conditions: Equations (1.2) and (1.3) can be used in
conjugate heat transfer coupling.

3. Specified convection surfaces acting over surface I',:

(n, OT)

i

()

Where; h,, is the convective heat transfer coefficient; T}, is the bulk temperature of the
adjacent physics model; and Ty, is the temperature at the surface of the model.

k

=h(Ty—T;) on T, (1.4)

Remark 1.3: The positive specified heat flow is into the boundary.

1.1.3 Weak forms of the thermal equation

The weak form of heat flow equations is given in Equation (1.5) as follows:
find temperature T € S,, such that Vw, e W;:

dpc,T) 9 ar
W ’ )T[’”"T"’ - "aﬂd‘*z Jungtan )

i

t

Here, wy is the test function of temperature 7 in infinite-dimensional space Wr.

The semi-discrete Galerkin finite element formulation of the heat flow problem is
stated as:

find T"e 8}, such that Yw) € W

dpe,T") 9 T’ :
N v v Th .fl _ k— dQ= h _B dQ
‘,[ W T{ o + ax, pc, L, B ;[qu (1.6)

1

Where, S; and W' are the sets of finite-dimensional trial and test functions for
temperature, respectively.

1.1.4 The shape functions for FEM
The basic shape function for the coordinate:

,,

x(§)=ZN'E(§)x’,=NiE (8)x;. (1.7)

i=l

Here; N[ (&), is the shape function at node i; &, is the element local coordinate; and
x;, is the nodal coordinate at node i; n,,, is the number of nodes per element, respectively.
The interpolation for temperature variables:

My

T(E)=)N'T,=N]T. (1.8)

i=l
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Here, N/ is the shape function for temperature at node i, which is consistent with
N for the class of isoparametrical element. The standard isoparametrical element can
be used for the temperature interpolation, for example, the low order 4-node tetrahe-
dral element and 8-node hexahedral element, are the most commonly used for thermal
analysis, although the high order 10-node tetrahedral element and 20-node hexahedral
element are also useful in achieving better accuracy with the same number of nodes.
The other shapes, for example, wedge and pyramid can be used for the transition
region between tetrahedral and hexahedral elements. The details about these shape
functions can be found in Bathe (2006) and Wang (2000).

1.1.5 Formulations in matrix form

Integrating of Equation (1.6) by part for the third term on the left-hand side, applying
boundary conditions of Equations (1.2)—(1.4), and substituting the shape functions
into it, one can obtain assembled global Equation (1.9) in matrix form:

CT + (K™ + K" + K*)T = Q™ +0°™ + 0* (). (1.9)

Where,

Ea 30 600 pJ. ¢,N/NT dQ is the element specific heat matrix.
e=|

K" =3K" K, p_[ch,.Tkaj’k dQ is the element mass transport conductiv-
3 . e=l Q
ity matrix. .
ne
th _ ll b _ T T . et N BT
K" = e’, K _[N, mkpmN ;, dQ s the element diffusion conductivity
. e=]
matrix.
ne
K“ = e K= Ih N; NT dI' is element convection surface conductivity
2 e=1
matrix. "
0™ =) 07", 05 = _.-qu dT is element surface heat flux vector.

QC()ﬂ‘v' — C(\I’W Lunv

Qi = IT thiT dI' is the element convection surface heat flow

vector.

0= EQ,, iy = IqBN 7dQ is the element heat generation vector.

Q,

c
ne

Here, 2 represents the assembly operator for element matrix or vector with num-
e=]
ber of ne elements.
2 represents the assembly operator for element surface loads.
1
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1.1.6 The nonlinearity in thermal analysis
1.1.6.1 Material properties

The material properties depend on the temperature, that is, k = k(T), ¢, =c¢,(T).

1.1.6.2 (Convection term from computational fluid dynamics
(CFD) coupling

The definition of Peclet number for convective heat transfer problem is
Pez%uv”h". (1.10)

Where, h¢ stands for element size.

For a heat flow problem with Pe > 2.0, to avoid oscillation of the solution of the
temperature field and to get a better quality matrix equation, the spatial stabilization
method may be needed. The streamline upwind Petrov/Galerkin (SUPG) method is
presented in the further section.

1.1.7 Stabilization method for convection-dominant
transport equations

The SUPG method is used for the convection-dominated heat transfer problem for the
case, where Peclet number is higher than 2.0. For details about implementation of
the stabilization method for transport equations, please refer Section 1.2.9.3.

1.1.8 Penalty-based thermal contact

The thermal contact problem can be used for thin air gap or other thin-layered prob-
lems with different thermal conductivities.

Assuming the thickness of a thin air gap is ¢, and T} and T are the temperatures on
the side A and side B of the contact wall, respectively, then the heat flux from T, side
into 7 side is:

T,-T,

=k
=t

(1.11)

Here, k is the thermal conductivity, and the heat flux from T side into T, side is the
negative of ¢ in Equation (1.11). Here we assume the air layer is thin enough, so linear
distribution assumption of temperature across the air gap is acceptable.

Then thermal conductance for this gap is:

hy== (1.12)

where h, as the contact thermal conductance, can be setup as input property.
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1.1.8.1 The matrix equation for thermal contact
The heat flow for side A

J‘WA h/(TB‘TA)dr (1.13)

The previous equation can be added into the left-hand side of Equation (1.5) to
consider the thermal contact affect from the air gap, and the matrix form can be ex-
pressed as:

AlA/ - JNAIh N dr (114]

'\lBj JNA: h Nﬂjdr (115)

where, Ai is the surface node i on side A and Bj is the surface node j on side B, respec-
tively. kT, + k5,75 needs to be added into the left side of Equation (1.9) for side A,
and its negative value will be added in the same way for side B.

1.2 Fluid dynamics

1.2.1 Basic equations for fluid flow

We assume the viscous fluid to be isothermal and barotropic (i.e., F(p,p)=0)
and that dp/dp=Blp, in which B, p, and p are fluid bulk modulus, pressure, and
fluid density, respectively. The Arbitrary Lagrangian Eulerian (ALE) formulation
is usually used to handle moving boundary problems of fluid flow in coupling
analysis. The fundamental equations of fluid flow (Zhang and Hisada, 2001) are
expressed as:

1dp 1 dp 9y,

= —¢L+t=0 in Qf
Batl+BC ox, +ax m ! (1.16)
v, dv, do, o
— +pc,—t=—"L+pg,+ 1, Q'
d(pe,T) L0 ar
Tv, -k |=
PR ™1 L
X . (1.18)
2uD +g"'[ p+Ag J ¢ in Q.



The physics models 7

The primary variables are pressure p, velocity vector v, and temperature 7. Here,
o is the Cauchy stress tensor, g is the acceleration of gravity, and ¢=v—v, is the
relative velocity of fluid particles to the ALE coordinates with v, the mesh velocity.
Q! denotes the spatial thermal fluid domain bounded by the boundary T/ of interest
at any instant t. Here the superscript f stands for the fluid component. \ is the second
viscosity, and k is the thermal conductivity. And in Equation (1.18), the strain rate
related energy term is expressed as:

V)

1
2 _ i —
D" =ep, with e, = 5 (v,

Remark 1.4: The source term f; in Equation (1.17) may come from the coupling
physics, for example, the electromagnetic force. The outgoing variables are the pres-
sure p and velocity vector v in the coupled physics simulation.

1.2.2 Boundary and initial conditions for fluid flow

The boundary is composed of T'* and T corresponding to Dirichlet- and Neumann-
type boundary conditions, respectively.

v,=g on I/ (1.19)
on;=h on T (1.20)
T=T" on T} (1.21)
k-n,oT,/ox,=q" on T. (1.22)

And subject to the following initial conditions:

v,(0)="v, on Qf (1.23)
p(()):op on QF (1.24)
T(0)="T on Qf (1.25)

The boundary conditions for the energy equation are the same as those in previous
sections.

Remark 1.5: Equations (1.19) and (1.20) represent the coupling boundaries in the
fluid—structure interaction (FSI) problem with g; received from the structure and #;
sent to the structure.
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1.2.3 The constitutive equation for fluid flow

The fluid is assumed to be Newtonian, and the constitutive equation is:
T | ( ) (1.26)
O, =-p ,-,-"‘211 VitV L

where §;; is the component of identity tensor and w is the dynamic viscosity of the fluid.
The propertles for thermal are provided in the previous section.

1.2.4 The weak forms
1.2.4.1 Galerkin formulation for N-S equations

The weak forms for the fluid equations given in Equations (1.16)—(1.18) by the Galer-
kin method are written as: find pressure peS,, velocity v€S,, and temperature
T € &}, such that Vw, e W,,Vw e W, andVw, e W}:

Jw la’p‘ +1.92 vy =0 (127)
o \Bot|, B ox

fw p{a te V- f]dQ+Ie(w) o, p)dQ= [ w,-hdr (1.28)

Ty

.[ [ £ ) (pct.Tv,,—kVT):|dQ=

Q

(1.29)
J'wr (2uD*+¢" +V -»(—p+A(V - v)))dQ

Q

Where S,, §,, and Sy denote the sets of infinite-dimensional trial functions for
pressure, velocity, and temperature, respectively. W,, W,, and Wr are the sets of
test functions (weighing functions) for the continuity, equilibrium, and energy equa-
tions, respectively.

The Galerkin finite element formulation of the fluid equations is stated as fol-
lows: find pressure p” eS[’,’, velocity v" € S/, and temperature T" €S, such that

h ) h h h h
Vw, eW, ., Yw e W', Yw; e W

1 Ia h
[ =221
a \Boat],

h
fwf,' : p(%ﬂ" -y - f”JdQ+ je(w") o', p"dQ= J'w" R"dr  (1.31)
Q

Ty

sl
B ' ox,

—+V.y ]dQ=0 (1.30)



