ey |, f—

a5

RGBT ERARRER

- 517 %

System Simulation Technology & Application

(Vol. 17)

THAZRAXF LR B

2016 - A B

nEE T

AR E A S RGN KLV ZE RS b E RGN B2 HEAR M L& R 2 AR 2R
S5 .

AR T2VGE 70 F L BIEFR R G KA 2 SEATE A AP SR E & S Bz MK A
AL T RER | [B B AR AT b b R B BB R » LA BORAR 5 0 BL°F R 2 R GRS SF 1 B e

A A5 A BERHEE SRR T TR 3k o RGO AL S BOR BB SRR FA B LA R s S5 2 AR 56 b Ui A
2%,

EHERS B (CIP) #iiE

RGO EBARBFR . 55 17 B/ WRosE £ 4. —a L sp EREBOR RS it 2016. 8
ISBN 978-7-312-4059-7

L.

e .Bg- M. RZGHE—X%E N.TP391.9-53

o [i A B i CTP B2 7 (2016) 55 204138 5

tH kit

ED Rl
=T
24
FE
N5k
FH
IO
R
EM

[Rb A R K2 iRt
TRA AT £ 96 5,230026

http: //press. ustc. edu. cn
BRI AREN R A PR 7

Hh R BOR K H i
EEHEAIE

880 mm X 1230 mm 1/16
22,25

890 F

2016 4 8 HSE 1 [l

2016 4F 8 A5 1 YKEA
186. 00 JG

B 9]

£ %

Bl E 4%

(R ERARRENAYRESR

W FT RS

5E & £ 8B

‘BEEGEBARG®RETE R, ERAVSAERARPMLRARZE, £ =M ARREZAH
FHEEFE(FURRDMEFTEN BE EHEFHROTHLE, ARE . ZHE WHEN . F
BRAEFHAGTB RN ATEE ENALERARRFRBMLE, F = K" L E o th A FH EZH
W GR BN EETIXFRNEREMALEGREKRFT RN FRES.

FRHALMMNAR . EREEHFZEERTANFELSHNENER, FEAMEELL L. EA
ARBENAGAR G AR R EBRK AR RZLENARMFRESRA, TARANGEERFEWR W
EAALKNMR . AR RETAE LT RLEFEYRER, INMEEL2 R E T
REXREE R DT RAGET EFHER KRGHY.

KERBREGRT EHBNTEORUMREY R B ZALEERRFH L, FR
ERAFREEORRSERREFS N T k. ANBRECENE S HEEELEN N ITHEANBA &
FEAFHBEFR BALRAFWANR BN E T BN HENGERA L REBRAAN EAFEHRE
BEGEENG RN EAREARERANEAFR NE AL ERFHA SR NI EAH S R
(CAS) BB UAEFRERNENNEASAGE TR NBA ELER T, ZBFAURAEEOHE
MEewERt. ERC DACEE KOG ETRE MECEMPERZ RSN RAACPS., TR,
FEHRNIAREAZTERAGEMFMBEARELFHRY, ERFRANRRGTET EfGEHK
AP EEREERMNNS R A0 E WA T4 1 W00 2 0% 5 4 K 114 0 L RA MRS
FWHEET EFMRARARLES HREEREARC LR REEANREER .

AXH2BHA 21 ﬁ,éﬂé@%:/\ﬂfﬂi,Fﬁ%i—ﬁﬁ\kﬁ%\%‘ﬁ%&ﬁ%%%é\&*%%fi,%
REGENBEM" X —HHEGHAF ERNH AR WAL EFENT FEE. MAE Y RIUK A
B BEXERE BEFHRENRRTIRENRG ARLCEEZ T N2 T REAL L,
I, 52 Hy 4y 3B A B AL B “ R 1§ 167 (Cyberspace) F By 1% % sk MUOE B R B F F , BB E A B
—HEER, AWEHR ANKHERZE, HITEN B BHEFEFARARHER TR
EABRAANKEFEFATRGEN —Ho. BEFAREZACUHEZZH LEREZEANAK.EFT
B AMNERREF T B L EERF, EREZEF, AR UBAT S A0 A K E 300 2K &7 D3t
THE B LR F AL AN 272, W R B A N R A EAE, RA . Ex /MR A
PEYFAZEHRE, CEAZEFHBIRYURARCREROH L2 LY. A, FERELE
WMBREGARBH R ZEERR. FEMFE AR B ZARX — R R EY R A+ H
BftaHmAC, RERHTANEGERFE THENFRE LEESRITH A,

i FADRBRARILEA - B 17 %

HPE A FERR AT REELZR K ECFERAATEF 2T ERANATLZR 2 EHW
“B17TETERARGERARRLR A ¥ A% 2(17th CCSSTA 2016)”, 34k 2| £ X 100 &, F A 70 &.
EF ARBRE2ERBEGEBR VB RABE SR MASREGEIR ; BH ERER
A 2R, AARANLEA . REERGEIRAZBSZHE 4R, KRN XF RS Z WA, A
BPEESH RBRTLENFRRENT MEARMEAWAF, XRFARK, EREAKERZGE
MEEHRNRERIABRGBAER.

W& =
2016 4F 6 A T EPHERARARY

F—E8Z XN T KR &

Keyword Search over Semantic Internet of Things Using MapReduce --------- Huang Hai, Chen Zong-hai (002)
Dynamics and Optimal Design of a 3-DoF Parallel Manipulator for Pick-and-Place Applications «:--+seseeeeeeees
.. Lou Yun_jiang,Liao Bin (009)

BB REBESEDHASH

Armored Mechanized Force Tactical Internet Topology Generating Method and the Simulation Analysis

.. Han Zhi-he,Lin Na’Yang Chao—hong (022)
A AR BFST AR KAT S S B RE T FR AR e voevevrermmmemmmmremnnniane o ¥,B % (026)
KD-JMASE 4T /PR ISR AR G E0TI covvvvrereermmnsermmmnnerenniineninnnen. FOR.ZE ¥, EFHE.Z (032)
BT RR KRR B ST LR GETTIL cveevrrrerreerennn, Z=r L, /N E, K 46,2 (037)
BEIKRLBEE TR PFGEEL e EOMLHISE (042)
ZRABEIR G K B EFEARIFIT cooovevrrrmrrrnrremmein, E T, E,% B,% (047)
%?’ﬁl{ﬁﬁ?ﬂﬁ’ﬂ B,C w%g%mﬁ%mmk gﬁ"-}-’_ﬂg {&’% EQ,% (051)
— R R T X EIL AR R BRI I oo 223,V T3, BRSEHE (055)
NS E I Bt SoH BB RITFITLEIR oo % BEEE.H L% (061)
—Fh % A EKF-UKF 9% kalman JEJE B s SoOC AT s cvoveeerrrrememeeeeenenns % B, EEE,BESENE (066)
3T MATLAB/Simulink f)3) /) #H M SR BL S 05 FLABFTE -ooveveeeeeeeees X B EER.E (070)
—FhEE T Simulink SR B F B2 8 1 HL ML P FORZSIM AR -ovveveevereneeees x| #.4 Se EEWSE (074)
BT MM B S EARBIE MBI B BETIPE T oo, SAEE (078)
HE— B BOH IS 7 T ik B HAE BT SMETHIIRL ooeeererereerieeeees SR N B LA (082)
—MEEYEME REPERRMEEEBBII oo TR, R 2RI, 4 (088)
BRSFGEAE TR BB S EIGY coveveeeerrerrmmmm s % FE,BETE (092)
L L R A R P R W g - BiA L 01" iy PP A3 , BREAE, S Bk (096)

E@Bﬁ%ﬂ:ﬁ?#ﬁ-ﬁﬁ;gﬁ&ﬁm% .. $ g, Faks, X & (102)
—F3E F TR BN MESH RIZE B Q0S BRHT TN ++oeereererrmmmmnerserrummuiiinninennn XIVE2E S f 2, BBk (107)
E@ﬁﬁﬁ*Tﬁ}%%é%ﬁ{gag\ﬁwﬁmﬁ .. ﬂeﬁ;ﬁ: CaATi)

MZEHEBRG TG ZEAS[A] vevrerrrerere et RO, 2 & (115)

sV e FAFRIRAZILLA - 3 17 %

EFE R R EME BT E R G LETETIIT +oeerrerrrrereemsmsreeeesniiesaninnees T 3L, HLIMAE (120)
HTF DDS B S5 BRI F S TR AR T S S -voeeevre e FHE.Z2Z &#,F .4 (125)
REEEDEHEWGEENRGERBIAGHEL oo BT, RABE L REE LS (129)
BT R R RI B ETIR GG cov vos sows vonn suisa naue sk saunsans ssssssns saien sva HABEL, S @k, HH .2 (133)
ﬁﬁﬁﬁgﬁmﬂ%ﬁzwﬁ ... L XA E, kE R (138)
AT R BT BRI B Pt O BRI RIIL ooeeveseerssoess s BOROERE.E .S (142)
HT GENESIS64 fFME LI B B IYILRZRGE -vvvoeeererrerreemmnsereniniinennan FEE, B, IR, % (147)
M RBESEL S BRBEGAIIRIFGETI coooeeerrerrrermmii s st B & (152)
HF Ev-Globe R A MBI 5 ELRGIFRIITE - orvvvseremsssnmssnsnnns BRI A0 B . 45 (158)
Design of Battery Management System Based on MATLAB/Simulink and Embedded System ««««-+-seeeereeeeeeenees
... WangYu_jie’Zhang Xu,wu Ji,et al (162)

BT EERE BN LKA R RXIBPTEPIIE oo B A BRE A, ZERI5R (166)

FWEBD MARAESEREFDHE

HETF Patran RSB BN FE S HIBTHF LI - ceerrrmermerrereermmrm s 2 B BRERE (170)
%iﬁﬁﬁ‘&ﬁ%&ﬁiﬁﬁ}%ﬁ@z%*@%%ﬂi}gm&ﬁ» 3{ 9%,5}%@%,?1‘2 Z|§ (175)
SR IERE F IR GO EIAIHT ooreorerreonnesess onssonssssns consnnssnnes suenicnsonedossnnnonsans O LIREE (179)
B HR RN AR DR AGUT TR+ rees smrsaesssoss smmennnemass sasmmnsns nanaassssons sais ames A ACHE BN, B SE (183)
%ﬂ%ﬁiﬁﬁiiﬁﬁ‘ﬁ@ﬁgﬁﬁﬁ% .. :JC/J\VA{%,E?’@ —%‘:,_’Eh %’% (187)
F R IR EE [BE Bl EHARTTELIFIT covovvvererrrrrrrrnremrsn, =5 ﬁg,ﬁgg,gﬁﬂ,% (191)
%?ﬁﬁ{ﬁﬁ%%%ﬁﬁﬁ%%%ﬂ%%ﬂﬁ ﬁ{ﬁgﬁp,ﬁj‘tﬁ,ggz%’% (196)
ETERE M LR EAETIBIIL --oeeeeerrrrernsereeserenminnieeniinn, WEHE,E B, HEL (201)
BEEAREEE MG SRR GBI o ocoeerreereerrrerrerer. IR R, MRERE (206)

BAEBBZ EMWEFIR

Research on VMF Message Encoding and Decoding Method — «««««+++ssssssssssmmmmmimmtientennniiiiiiiiss s
... Bl Xue_jun’xu Da-chao,Xiao Qing’et al (212)
DS BB R T+ e veee e e ettt AR, BN, K YT (216)
Face Recognition Via Sparse Representation and 2D Feature EXtraction r-erecereereeeeereresriircaniininnieeene.
... Li Nai-qing,Wu Cheng—zhi,Zhu Zhang-qing,et al (219)
T KELM B R SRR IR ZEAETHIFGT covvvvvrererererermmmmi e THRE, HAE (226)
P PR AT AN B B BB ST RBFIE wooveveereeeoneesen BE 40,06 IR (231)
A G BB LA A R B ZR v evve e e e ettt e X A (237)
F Radau FUie sk i3 S B P ST cvveeerereesemrmeeessnneeenniienniieaens BWGFE B BB (240)
FTFLZRGINER R B S B e TEEA . TEW.% (246)
5 BAR B A WA — AR AERBFGE - ooevoeereossoreoos e HEBH BB A% (251)
HTF B DSmP HERAGIEHEGEEEHM cvvvvveeemmmmmrmrrmmn e W, RO, MR aE , 2 (256)

EFHTERA AT AR FIERZLEHL AR ovveererreerrseesssrernnneeensnnanenn. 2 4k, T, R (259)

HTH SR BT AT TI - ocevereremmemrermemmmin, KNG, X, 25k , 25 (264)
G B I A T A BOR A ST AT KPR SN TR B AL AT ovvvvoeenssseenonseeen ERB.H Rk (269)
Security Analysis on S-Box of LBlock Algorithm Based on Trace-Driven Cache Timing Attack «+«ceeeeeeeeeeeeeeess
... Yu Xi,Cai Hong-liu,Chen Cai-sen,et al (272)
FE AR RIS T BRI IT SR E e W, H]ITE (278)
ETHEBERRIE T EIRBITTEE ccoeererrrerrerrer £ WS, KRN, FA4YL, % (283)
HL R ZE T M AL AR WSS R GG ovvverrrerr e W . OZ4.EER.Z (287)
ET 8 I 22 WG AR S BB LB BRI covveereemmrsreremmm S (292)
T B A /D E BB BRI] vevvvvereerroemmmmminnnin 2 FLAL, R AT B 3 (297)
BB IR M S TP v cneu vumenen coas eveeeren ronn svevenens anessassmany cvevee FAYLTE M., (303)
BT N2 S S HLIMEIC LB : coer e T OME, BRI (307)
EEA L R SR ORI B B ATLRRIGE ovveeeoeseeemsensssnns il AR SRR % (312)

FNEBD RBEREDHA

LTRSS B O AR B B cvevereeererenerninritenee e e R, M. .4 (318)

FLCEBD RNEI\ESZTIF

G AR SRR C4. 5 BERITE B AR 20 PR AR T FR B L oo emmmmmmeeemsmmmneeeens TR, % W\, E M.% (324)
REEEIE T ER PV B EBIEEIR coreeeererrreermmrneeeennniiennas wOmLE . %, (329)
PoEe f It s, D ———— B, T B3N B, (334)

HTF ISM F Excel B H B RS G2 %] crrveeeererrremnrenerrerenses s B SR BB, BRSEHE (340)

2 FREADEABRARABZRLEMA - B 17 %

Keyword Search over Semantic Internet of
Things Using MapReduce

Huang Hai , Chen Zong-hai
(Department of Automation, University of Science and Technology of China,Hefei, Anhui, 230026)

Abstract: The Internet of Things (IoT) has recently received considerable interest from both academia
and industry that are working on technologies to develop the future Internet. Semantic technologies
based on machine-interpretable representation formalism (such as RDF) have shown promise for
describing objects, sharing and integrating information. The addition of semantics has also helped create
machine-interpretable and self-descriptive data in the IoT domain. However, the increasing scale of
RDF data brings challenges to search over Internet of things, making this problem even more time
consuming to solve. Existing solutions, developed to run on a single machine, only work well on small
graphs. In this paper, we target on answering keyword queries over semantic internet of things on
multiple computing nodes. The scalability issue was solved by employing MapReduce jobs to compute
answers through iteratively joining the building blocks generated by each computing node. The

experimental results on synthetic and real-world datasets verify the efficacy of our methods.
Key words: Semantic Web of Things; RDF;Cloud Computing; MapReduce

1 Introduction

It is estimated that there will be around 25 billion
devices connected to the Internet by 2015 and 50 billion
by 2020. Such a huge number of highly distributed and
heterogeneous devices will need to be interconnected and
communicate in different scenarios autonomously. This
implies that providing interoperability among the things
on the 0T is one of the most fundamental requirements
to support object addressing, tracking. and discovery as
well as information representation, storage, and
exchange. Using semantic annotations in the IoT domain
provides machine-readable and machine-interpretable
metadata to describe the IoT resources and data. The
semantic Web technologies include well-defined
standards and description frameworks (e. g. RDF,
OWL, SPARQL) and a variety of open-source and
commercial tools for creating, managing, querying, and
accessing semantic data.

In this paper, we focus on implementing efficient
keyword query processing over semantic web of things

which can be regarded as a large RDF data graph.

Huang Hai (1980—), male, Anhui Hefei, associate researcher, Ph. D.
Research interest: semantic internet of things; Chen Zong-hai(1963—),
male, Anhui Tongcheng, professor, doctoral supervisor. Research
interest: robotics, intelligent system, new energy technology.

Keyword query enables inexperienced users to easily
search the data graph with no specific knowledge of
complex structured query languages (such as SPARQL).

Searching or analysing a graph even with millions of
nodes would be time-consuming at best and totally
impossible at worst, especially when the graph cannot be
stored in memory on a single computer. Thus, we hope
to solve this problem using parallel data processing
techniques on a cluster of computing nodes. We believe
that the most crucial problem for real-world keyword
query systems is to return users answers as quickly as they
can (say in a few seconds), even these answers are not
the complete or best. We believe that the most crucial
problem for real-world keyword query systems is to
return users answers as quickly as they can (say in a few
seconds) , even these answers are not complete or best.
Intuitively, keyword query over a large RDF graph can
be solved in a Divide-and-Conquer strategy.

However, given a RDF data partitioned and
distributed across computing nodes, the communication
cost is unavoidable during keyword search. Since each
computing node holds only a partial graph, information
has to be exchanged among computing nodes to find the
global optimal answers. The potential multiple rounds of
communication over the network would lead to high
query latencies. Thus, there is a trade-off between the

B—WF KN & R &

quality of query results and the response time. Our target
is to maximize the quality of local query answers, and
minimize the response time in both local search and
global boosting process.
To achieve the above mentioned goal, we use
MapReduce jobs to iteratively joining the building blocks
generated by each computing node. The intermediate
results exchanged on the network are minimized to
reduce the communication overhead. The iterations stop
when no new building block appears.
Our proposed method has the following novelties
and advantages:
® We parallelize the process of keyword search
over large RDF graphs on a cluster of
computing nodes. MapReduce is introduced to
compute the global optimal results based on
building blocks of subgraphs for the first time.

® The evaluation on both synthetic and real-world
datasets shows the efficacy of our method,
which can return results in a short time.

2 Problem Definition

Definition 1 Given a set of RDF triples D, an RDF
graph G,(V, E) is a directed graph where V is the set of
nodes (RDF subjects (s) or objects (o) in D) labelled
with s or o, and E is the set of edges in Gp labelled with
predicates.

There are many definitions for keyword query
answers that are returned to users such as Steiner tree,
distinct rooted tree, r-radius subgraph™!. In this paper,
we define keyword query answers as distinct rooted trees.

Definition 2 (Keyword Query Answers) Given an
RDF data graph G and a keyword query Q(k,, ks kss*=,
k,) where each k ;is a keywérd , S, is the set of nodes in G
that contains keyword k;. An answer {r, (ni, nj,--,
n)Yof Q is a tree with a root r such that for each n;eS;,
there exists a directed path from r to n;.

Definition 3 Given a keyword query Q on graph G ,
the score of an answer T{r, (n,,n,,*=+,n,;)) is defined as
follows .

Score(T) = Y dist(r,n,) ¢}

i=1
where dist (r, n;) is the shortest distance from r to
keyword node n;in G.

Note that the score definition above adopts “match-
distributive semantics”. In this semantics, all root-match
paths contribute independently to the final score, even if
these paths may share some common edges.

Similar to [2], given a keyword query Q on RDF
graph G, we are concerned with finding the top-k best

answers, which have distinct roots.

Definition 4 Given an RDF data graph G and a
keyword query Q(k,, ky, ks, =+, k) where each kis a
keyword , the best score of answer T with root r is the
maximum score over all answers rooted at r. And we
represent this best answer with root r as T (r, Cky,
kyseey k).

PROBLEM DEFINITION Given an RDF graph G
and a keyword query Q. we are interested in finding the
top-k distinct rooted trees in score increasing order .

3 Partition of RDF Data Graph

Firstly, we manage the large RDF graph by
partitioning it into subgraphs and store them on multiple
nodes. Obviously, the quality of partition is crucial to both
the efficiency and answer quality of keyword search.

A simple way to partition a large RDF graph into
subgraphs is by a hash partitioning algorithm. The nodes
containing the same keyword are grouped into one
subgraph and stored on the same machine. However, a
keyword query normally contains multiple keywords. If
nodes including different keywords locate on different
machines, the communication overhead to find the
common root node connecting keyword nodes would be
very huge. Thus, this partition method is unwise and we
need a better one that can minimize the potential
partition-induced communication.

As we know, the process of keyword search is to find
tree structures with roots connecting keyword nodes.

Considering that answer trees normally consist of
nodes with small distances to each other, we should
partition nodes with high connectivities into one
subgraph to increase the ability of single computing
nodes for answering keyword queries independently.
Meanwhile, to reduce the communication cost during
keyword search, the number of edges crossing subgraphs
should be minimized.

Last but not least, the size of partitioned subgraphs
should be balanced as comparable workloads are required
to be distributed on the computing nodes by MapReduce.

Graph partition problem has been well-studied and
some partition tools have also been developed. In this
work, we use the METIS' partition tool, it fulfils our
aforementioned requirements.

METIS aims to minimize the edge crossings (or the total
weight of them) and keep the close nodes in the same
subgraph, while balancing the partition size. We first use
METIS to divide nodes of a RDF graph into disjoint

1 http://glaros. dtc. umn. edu/gkhome/views/metis/ .

RAVABRARBALMA - 17 %

partitions. Then we add all outgoing edges to each partition.
If node v; falls in partition G, all outgoing edges v;, v, of
v; in the original RDF graph are added in partition G;.

Once the RDF graph partitioned into subgraphs, each
subgraph consists of all nodes in a partition as well as all
portals incident to the partition. For a subgraph, a portal
node can be either in-portal node or out-portal node or
both. For an in-portal node, it has at least one incoming
edge from another block and at least one outgoing edge
in this block. For an out-portal node it has at least one
outgoing edge to another block and at least one incoming
edge from this block. For example, in Figure 1, node
e,, e, are portal nodes. For partition S,, e; is an out-
portal node and e, is an in-portal node.

Partition S,

- ~
-

Partition S,

’ ~ - ~

Figure 1 Portal nodes of subgraphs

4 Search Algorithms

In the section, we present our method of computing
global top-k answers using MapReduce jobs. We first
give some introduction about MapReduce framework.

MapReduce™® is a programming model for
processing large data sets, which cannot be handled on a
single machine. Data are partitioned over multiple
computing nodes by storing in a distributed file system,
e. g., HDFS in Hadoop® that is the most popular
implementation of MapReduce. Data processing is
conducted through Map and Reduce functions on
computing nodes.

The Map and Reduce functions of MapReduce are both
defined with respect to data structured in (key, value) pairs.

The Map function takes inputs and produces a set of
intermediate key/value pairs. Through shuffling, all pairs
with the same key from all Map functions are grouped
together, and then passed to the Reduce function.

The Reduce function accepts an intermediate key and a
set of values for that key, and then merges together these

2 Apache Hadoop http://hadoop. apache. org.

values to form a possibly smaller set of values. The data
flow of the MapReduce framework is shown in Figure 2.

input

HDFS
replication

Figure 2 MapReduce Data Flow

4.1 Generating Building Blocks

The core problem of the¢ second search phase is how
to obtain the potential answers that span in different
computingnodes under MapReduce framework.

As data graph is distributed across multiple nodes,
MapReduce-based methods are not able to maintain global
structures during computation. Computing nodes executing
Map and Reduce jobs cannot communicate to have
awareness of global status. Thus, given an RDF graph
represented as a file of adjacent node lists stored on HDFS,
passing information is only possible from a node to its
adjacent nodes. Local information has to be passed multiple
iterations to finally reach global answers.

A simple way to compute keyword queries is using
edges as basic building blocks. For each iteration, if the
two building blocks have the same node (two edges
joined by one node), Reduce function joins them and
emits a new building block (which could be a path or a
tree structure). All keyword query answers can be
obtained by iteratively using Reduce function on all
building blocks until no more blocks can be joined.

However, this approach will lead to some serious
First,
generated in each iteration could be very huge especially

problems. the amount of intermediate data
for dense graphs. In fact, most of intermediate data has
no contribution to generate the potential keyword query
answers. Second, executing MapReduce jobs iteratively is not
very efficient. If we build answer trees from edges, the
possible number of iteration steps could be large, which will
lead to low efficiency. Thus, we hope to find a way which
could decrease the amount of intermediate data generated and
the number of iteration steps. Meanwhile we also hope to
maximally employ the index we build for the first search
phase.

To avoid redundant computation and too much
generation of intermediate data, our strategy is to divide

F—8D XN = R &

the keyword query Q into some sub queries by grouping
keywords to multiple disjoint sets, under the assumption
that the keywords from the same set locate on one
computing node. For example, given a sub query
Q:({kys ky}y {ks}) of QCkys kys k3), the answers of
Q; span on two computing nodes such that k,, k, are on
the same computing node, and k; is on another one.

For a keyword query Q with m keywords, the
number N of sub queries can be computed as:

N=CL+CLs Chd+ L (2)
For example, the query with 3 keywords would have
4 sub queries.
For each sub query, we can dynamically generate a
set of tree structures and paths instead of edges in each
partition as basic building blocks, which have high
granularities and are very useful for consisting the
potential answer trees. We also define the join nodes for
each building block to build new blocks. And by the
index we build for the first search phase, these blocks
can be computed efficiently. Three basic building blocks
in each partition are defined as follows:
® TYPE [This type of building block is a rooted
tree with a root node r connecting a set of
keywords (k,,++, k,) and a set of out-portal
nodes E, to which r is reachable. We denote it by
a 6-tuple CE,, r, (ky,*, k,)» Sa, score,
©) such that the join nodes of this building block
is the nodes in E,; and S, score, p indicates
the partition id, score value and the path
information of this block , respectively .

® TYPE Il This type of building block is a rooted
tree with an in-portal node e; as a root node
connecting a set of keyword nodes (k,,+, k,).
We denote it by a 6-tuple{e;, e;s (kys*s k,)
S s score, P)such that the join node is e;.

® TYPE Il This type of building block is a shortest
path from an in-portal node e; to an out-portal node
e, denoted by{e;, e;, eys Sus Score, P).

For example, in Figure 3, there exists a TYPE [
building block: ({e,}, a, (k;), S, 2, @)in partition S;.

Partition S, Partition S, Partition S, Partition S,

e -< _ -

~

W s s 98 ~ - Nl i i

Figure 3 Answers span on multiple partition

TYPE [and [building blocks can be every efficiently

online computed through our single-machine search

algorithm and index. The number of these building blocks
depends on the concrete keywords, but is normally limited to
a small value. Thus, data copying across network during
communication would not cost much.

TYPE [Il building blocks are much more than TYPE
I and TYPE [l building blocks, but can be
precomputed offline since they are independent of
keywords. Storing them in HDFS will highly facilitate
the block joining process as no communication overhead
will occur.

Note that the root nodes in building blocks of TYPE
| are potential answers. Thus, we only consider joins
between building blocks of TYPE | and TYPE 1[I,
TYPE [l building blocks. To join two building blocks,
we define the join rules as follows:

Given two building blocksbk, (TYPE D), bk,(TYPE [l
or TYPE [[[) with different partition IDs, keys(bk,), keys
(bk,) denote the keyword set of bk, and bk,. The join
nodes set of bk, is E, and the join node of bk, is e. If keys
(bk,) (N keys(bk,=p and e €E,, then we have:

® TYPE [« TYPEIl: <(E,, rs (kys**s kn),

Siuar> scorey, P1) o ey (kpirss kjds Sizs
scorey, P3) =(E,—\{e}, ry(ky,==*s k;j)ys Siurs
score, + score,, P .

® TYPE I TYPE [I: <E,, rs Ckis***s kun)>

Su1s score,, P1) © (e, e, e's Suss Score,,
Py = {E,—{e} U {e'}s ry (kysesy kun)s
Sins Score, + scorey, P13).

Obviously, if a new generated building block
contains all keywords in query @, it should be a
potential answer for query Q.

For each sub query we iteratively use MapReduce
function to compute potential keyword query answers.
The Map function takes each building block and emits an
intermediate key/value pair. The key is the join node of
each building block and value is the whole building
block. For TYPE [building blocks, since they have
multiple join nodes we select each join node as key and
emit multiple key/value pairs. The second task of map
function is to delete all building blocks with score values
exceeding a threshold 7.

The pruning with threshold y is very helpful as it
limits the amount of data transferred across the network
and therefore can speed up the moving towards final
global answers. The threshold y can be set to a user
specified value or set to a suggested value generated from
the first search phase.

The Reduce function executes the job of joining two
building blocks to generate a new one. Reduce function
also checks if there exists any redundant building block,

6

RADHABRARZRILLA - F 17 %

which will not be emitted.
The whole process is outlined in Algorithm 1 and
Algorithm 2.

Algorithm 1 Map Function

Input: Building block bk, threshold v;
1. if bk.score <<=y then
2. if bk is TYPE [[or TYPE [[[then

3: Node = bk .JoinNode;

4. EMIT(Node , bk)

5: else

6: for all portal nodes e € bk. Eo do
7: bk .Eo = bk.Eo—e

8: EMIT(e, bk)

9: end for

10: end if

11: end if

Algorithm 2 Reduce Function

Input:node, building blocks [bk1, bk2, ==+, bkn];
1. for all bki do
2: Node= bk.JoinNode;
3 EMIT(Node, bk)
4. end for
5. for all bk, bj do
6 if bk, bj are from different partitions AND bk #

bj then
7: bkj = bk « bj;
8: node = bkj.JoinNode;
9: EMIT(Node, bkj)
10. end if
11: end for

4.2 Iteration Termination Condition

To achieve the global query answers, we have to
iterate the MapReduce function. A problem would
arise: when do we stop the iteration? Intuitively, the
maximal number of iteration can be set as the number of
partitions, since at each iteration we join building blocks
from different partitions. However, this termination
condition may allow unnecessary joining iterations and
therefore delay the report of query answers, when the
number of partition is big.

To terminate iterations at the right time, we
introduce the concept of “valid join” as follows:

Definition 5 Given a building block b generated
from block b; and block b, , if the score of b is less than
threshold y and if by is never generated before, we say
that b; > b, is a valid join .

Obviously, if there is no “valid join”, we can stop
the iteration. One example of iterative joining process is
shown in Figure 4.

{el},a,{k3),S51,2 TYPE | : {el},a,{k3},S1,2 : {el},a,{k3},51,2
[el),el,(kl,kl),SM‘l {el},el,{k1,k2},82,4 1 {el},el,{k1,k2},S2,4
{e2},r,{k1,k2},52,3 YPE I : Answer.a {k1,k2.k3},6 : Answeratkhk2k36-

{e2},e2,e3,53,2 T 1 1 {e2},r,{k1,k2},52,3 I Answer.a (k1,k2,k3},6
{e3},e3.{k3},54,2 | (€2},62,23,83,2 | (e2),r,(k1,k2}),52,3
{e3),r,{k1,k2},82,5, : {e2},e2,¢3,83,2
1 {e3},e3,{k3},54,2 | te3hrsthbk2h52:5

| (e3},r,(k1,k2),82.,5
Answer.r {k1,k2,k3},7

Figure 4 Iteration steps of joining building blocks

5 Experiments

In this section we describe the performance
evaluation of the proposed methods.

5.1 Experimental Methodology

We ran experiments on 3 Dell T7500 workstations
connected with a 1 GB network switch. Each Dell
workstation has 6 Intel Xeon processor X5650 2.67 GHz
with 12 cores, 24 GB of RAM, and a 1.4 TB hard disk.
We virtualized 18 virtual machines. Each virtual
machine is assigned 2 cores and 4 GB of RAM. We
installed the Ubuntu 11. 04, 64-bit, server edition
operating system, Java 1. 6 with a 64-bit server JVM,
and Hadoop 0.20.1. We used an extra node to manage
the Hadoop jobs and the Hadoop distributed file system.
In order to maximize the parallelism and minimize the
running time, we made the following changes to the
default Hadoop configuration: we set the block size of
the distributed file system to 128 MB, allocated 3 GB of
virtual memory to each map/reduce task, set the
replication factor to 1, and disabled the speculative task
execution feature.

Data sets
are used in our experiments. In this paper, we present

Both synthetic and real-world datasets

results on two datasets:

(1) LUBM’ is developed by Lehigh University. It
consists of a university domain ontology (containing 43
classes and 32 properties). We generated around 40 M
distinct triples to form a synthetic LUBM data set.

(2) YAGO* extracted from
Wikipedia and integrated with the WordNet thesaurus
and contains about 20 M triples. Compared with the
former dataset, this real-world data set is relatively

consists of facts

heterogeneous. More details of the two datasets are

3 http://swat. cse. lehigh. edu/projects/lubm/.
4 http://www. mpi-inf. mpg. de/yago-naga/yago/downloads\ yago.
html.

F—8BZ KR & R & 7
shown in Table 1. Table 2 Statistics of query datasets
Table 1 Statistics of datasets # Q2 Qs Qs
LUBM YAGO # keywords 2 3 >=4
: avg. # k d nod:
Edges 42,211,071 18,343,536 avg (L;Yl‘;";f) nodes 3312 4467 5313
Nodes 20,186,615 14,230,223
Properties 43 93 avg. # keyword nodes re78 1567 3215
(YAGO)
Keywords 4,233,534 8,278,931
, Figure 5 shows the running time when boostin
Query Loads Query processing speed depends on gl & &

not only the keyword search system, but also the content
of query words.

A keyword system produces answers quickly for
some queries, but for other queries it may take longer
time or even fail to produce any answer after exhausting
memory. Thus for fair comparison, we generated three
kinds of query sets in our experiments: Q,, Qs, Q.
Each query set has 30 keyword queries. Each query in
query set Q,, Q;, Q, is composed of 2, 3, and more
than 4 randomly selected keywords, respectively.
Examples of keywords used to generate query sets are
shown in Figure 5. Table 2 shows some statistic
information about query sets used in the experiments.

global query answers. The execution time is dominated
by the Map/Reduce iterations actually. For LUBM
dataset, the execution time reported is less than 20
seconds, because the data graph of LUBM is relatively
simple and the distances between nodes are small so that
the number of Map/Reduce iterations are limited. On
the contrary, the data graph of Yago is more complex
and some shortest paths are longer than 20 steps.

Thus, more number of iterations are required to
execute queries on it. Short queries, like the ones in Q,
including less number of keywords than Q; and Q,, can
be processed quickly in less than 20 seconds. More
number of computing nodes can speed up the process
even more.

501 Otop-10 50~ op- 50+ @ to
S 301 X < 304
5 | £
& 201 (= £ 201
101 B £ 104
o] 2 yi- B R
6 12 18 6 12 18 6 12 18
Computing nodes Computing nodes Computing nodes
(a) Q,on LUBM (b) Q, on LUBM (c) Q, on LUBM
= 701 Etop10
i, @]
g] oA
e 8 =
6 12 18 6 12 18 6 12 18
Computing nodes Computing nodes Computing nodes
(d) Q,on Yago (e) Q,0on Yago (f) Qs on Yago

Figure 5 The search performance

6 Related Work

There are some related work on keyword search
over RDF data graph. ® proposed the method that aims
at mapping the keyword query into one or more
structured query. They assume that the user keyword-
query is an implicit representation of a structured triple-

pattern query. They try to infer such structured query
using the RDF graph and retrieve the top-k most
relevant structured queries. They then provide the user
with the retrieved queries and let her choose the most
appropriate structured query to be evaluated. Different
with them, we compute the answers through traversing
the RDF data graph instead of generating candidate

ROV ABRRKBERLER - F 17 %

SPARQL queries. In fact, our problem is more related
to keyword search over general graphs. In [7], the
authors are concerned with the ranking function for
RDF keyword search, and they use statistic language
models to rank the results of keyword search. In our
work, we focus on obtaining keyword query answers
efficiently.

Among other approaches of keyword search over

S[l, 2, 8-10] s

graph focusing on computing rooted trees as
keyword search answers. BANKS™' uses a backward
search algorithm searching backwards from the nodes
that contain keywords. BANKS-[["" is proposed to
overcome the drawbacks of BANKS. The main idea of
BANKS- [is to start forward searches from potential
roots. BLINKS™ is proposed as a bi-level index to speed
up BANKS- [, as no index (except the keyword-node
index) is used in BANKS-[[. The single-level index
precomputes and indexes all the distances from the nodes
to keywords, but this will incur very large index size. In
this paper, we solve this problem by using bloom filter
techniques and design our index which is able to fit a
large number of keyword-node pairs in main memory.
Keyword search on relational databases™ "% is
related to keyword search on graph. Conceptually, a
database can be viewed as a labeled graph where tuples
in different tables are treated as nodes connected via
foreign-key relationships. Note that a graph constructed
in this way usually has a regular structure because schema
Unlike

approaches, keyword search on relational databases

restricts node connections. graph-search
heavily relies on the database schema and query
processing techniques in RDBMS.

Keyword search over XML data is also relevant to
but different

XKSearch™ returns a set of nodes that contain the

from keyword search on graph.
query keywords either in their labels or in the labels of
their descendant nodes and have no descendant node that
also contains all keywords. Similarly, XRank"® returns
the set of elements that contain at least one occurrence
of all of the query keywords, after excluding the
occurrences of the keywords in sub elements that already
contain all of the query keywords. However, all these
techniques assume a tree-structure and thus cannot be
directly applied to graph-structured data such as RDF
graphs.

7 Conclusion

In this paper, we presented our method for
efficient keyword search over internet of things which

can be represented as large RDF data graphs on multiple
computing nodes. It obtains global top-k results through
iteratively joining the building blocks generated by each
node under MapReduce framework. The experimental
results verify the efficiency. In the future work, we will
consider more efficient and better partition methods for
large RDF graphs.

References

[1] LiG,Oo0i BC, Feng J, et al. Ease: an effective 3-in-1
keyword search method for unstructured, semi-structured
and structured data [C]. SIGMOD Conference, 2008.
903-914.

[2] He H, Wang H, Yang J, et al. Blinks: Ranked keyword
searches on graphs [C]. SIGMOD Conference, 2007:
305-316.

[3] Dean J, Ghemawat S.' Mapreduce: Simplified data
processing on large clusters|C]. OSDI, 2004 :137-150.

[4] Guo Y, Pan Z, Heflin J. Lubm: A benchmark for owl
knowledge base systems[J]. J. Web Sem., 2005, 3(2/3):
158-182.

[5] Suchanek F M, Kasneci G, Weikum G. Yago: A core of
semantic knowledge[C]. WWW, 2007:697-706.

[6] Tran T, Wang H, Rudolph S, et al. Top-k exploration of
query candidates for efficient keyword search on graph-
shaped (rdf) data[C]. ICDE, 2009: 405-416.

[7] ElbassuoniS, Blanco R. Keyword search over rdf graphs
[C]. CIKM, 2011: 237-242.

[8] DingB, YulJ X, Wang S, et al. Finding top-k min-cost
connected trees in databases[C|. ICDE, 2007.836-845.

[9] Bhalotia G, Hulgeri A, Nakhe C, et al. Keyword searching
and browsing in databases using banks[C]. ICDE, 2002:
431-440.

[10] Kacholia V, Pandit S, Chakrabarti S, et al. Bidirectional
expansion for keyword search on graph databases [C].
VLDB, 2005:505-516.

[11] Agrawal S, Chaudhuri S, Das G. Dbxplorer: A system for
keyword-based search over relational databases[C] ICDE,
2002:5-16.

[12] Hiristidis V, Papakonstantinou Y. Discover: Keyword
search in relational databases[C]. VLDB, 2002:670-681.

[13] Balmin A, Hristidis V, Koudas N, et al. A system for
keyword proximity search on xml databases [C]. VLDB,
2003:1069-1072.

[14] LiuF, YuCT, Meng W, et al. Effective keyword search in
relational databases [C]. SIGMOD Conference, 2006:
563-574.

[15] Xu Y, Papakonstantinou Y. Efficient keyword search for
smallest Icas in xml databases[C]. SIGMOD Conference,
2005:537-538.

[16] Guo L, Shao F, Botev C, et al. Xrank: Ranked keyword
search over xml documents [C]. SIGMOD Conference,
2003:16-27.

