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PREFACE

Welcome to Java Network Programming and Distributed Computing. The goal
of this book is to introduce and explain the basic concepts of networking and
discuss the practical aspects of Java network programming.

This book will help readers get up to speed with network programming
and employ the techniques learned in software development. If you’ve had
some networking experience in another language and want to apply your
existing skills to Java, you’ll find the book to be an accelerated guide and a
comprehensive reference to the networking APL This book does not require
you to be a networking guru, however, as Chapters 1-4 provide a gentle intro-
duction to networking theory, Java, and the most basic elements of the Java
networking API. In later chapters, the Java APL is covered in greater detail, with

a discussion supplementing the documentation that Sun Microsystems provides
as a reference.

WhatYou'll Learn

In this book, readers will learn how to write applications in Java that make use
of network programming. The Java API provides many ways to communicate
over the Internet, from sending packets and streams of data to employing
higher-level application protocols such as HTTP and distributed computing
mechanisms.

Along the way, you’ll read about:

* How the Internet works, its architecture and the TCP/IP protocol stack

e The Java programming language, including a refresher course on topics
such as exception handling

¢ Java’s input/output system and how it works

* How to write clients and servers using the User Datagram Protocol
(UDP) and the Transport Control Protocol (TCP)
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¢ The advantages of multi-threaded applications, which allow network
applications to perform multiple tasks concurrently

* How to implement network protocols, including examples of
client/server implementations

¢ The HyperText Transfer Protocol (HTTP) and how to access the
World Wide Web using Java

¢ How to write server-side Java applications for the WWW

e Distributed computing technologies including remote method invo-
cation (RMI) and CORBA

* How to access e-mail using the extensive JavaMail API

WhatYou’ll Need

A reasonable familiarity with Java programming is required to get the most out
of this book. You’ll need to be able to compile and run Java applications and
to understand basic concepts such as classes, objects, and the Java APL
However, you don’t need to be an expert with respect to the more advanced
topics covered herein, such as I/O streams and multi-threading. All examples
use a text interface, so there’s no need to have GUI experience.

You’ll also need to install the Java SDK, available for free from Sun Micro-
systems (http://java.sun.com/j2se/). Java programmers will no doubt already
have access to the SDK, but readers should be aware that some examples in this
text will require JDK 1.1, and the advanced sections on servlets, RMI and
CORBA, and JavaMail will require Java 2.

A minimal amount of additional software is required, and most of the tools
for Java programming are available for free and downloadable via the WWW.
Chapter 2 includes an overview of Java development tools, but readers can also
use their existing code editor. Readers will be advised when examples feature
additional Sun Microsystems software.

Companion Web Site

As a companion to the material covered in this book, the book’s Web site of-
fers the source code in downloadable form (no need to wear out your fingers!),
as well as a list of Frequently Asked Questions about Java Networking, links
to networking resources, and additional information about the book. The site
can be found at

http://www.davidreilly.com/jnpbook/.
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Contacting the Authors

We welcome feedback from readers, be it comments on specific chapters or sec-
tions or an evaluation of the book as a whole. In particular, reader input about
whether topics were clearly conveyed and sufficiently comprehensive would be
appreciated. While we’d love to receive only praise, honest opinions are valued
(as well as suggestions about coverage of new networking topics).

Feel free to contact us directly. While we can’t guarantee an individual
reply, we’ll do our best to respond to your query. Please send questions and
feedback via e-mail to: jnpbook@davidreilly.com.

David Reilly and Michael Reilly
September 2001
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CHAPTER |
Networking Theory

This chapter provides an overview of the basic concepts of networking and dis-
cusses essential topics of networking theory. Readers experienced with net-
working may choose to skip over some of these preliminary sections, although
a refresher course on basic networking concepts will be useful, as later chapters
presume a knowledge of this theory on the part of the reader. A solid under-
standing of the relationship between the various protocols that make up the
TCP/IP suite is required for network programming.

I.I  What Is a Network?

Put simply, a network is a collection of devices that share a common commu-
nication protocol and a common communication medium (such as network
cables, dial-up connections, and wireless links). We use the term devices in this
definition rather than computers, even though most people think of a network
as being a collection of computers; certainly the basic concept of a network in
most peoples’ mind is of an assembly of network servers and desktop machines.
However, to say that networks are merely a collection of computers is to
limit the range of hardware that can use them. For example, printers may be
shared across a network, allowing more than one machine to gain access to
their services. Other types of devices can also be connected to a network; these
devices can provide access to information, or offer services that may be con-
trolled remotely. Indeed, there is a growing movement toward connecting non-
computing devices to networks. While the technology is still evolving, we’re
moving toward a network-centric as opposed to a computing-centric model.
Services and devices can be distributed across a network rather than being
bound to individual machines. In the same way, users can move from machine
to machine, logging on as if they were sitting at their own familiar terminal.
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One fun and popular example from very early on in the history of net-
working is the soda machine connected to the Internet, allowing people around
the world to see how many cans of a certain flavor of drink were available.
While a trivial application, it served to demonstrate the power of networking
devices. Indeed, as home networks become easier to use and more affordable,
we may even see regular household appliances such as telephones, televisions,
and home stereo systems connected to local networks or even to the Internet.

Network and software standards such as Sun’s Jini already exist to help
devices and hardware talk to each other over networks and to allow instant
plug-and-play functionality. Devices and services can be added and removed
from the network (as, for example, when you unplug your printer and take it
to the next room) without the need for complex administration and config-
uration. It is anticipated that over the course of the next few years, users will
become just as comfortable and familiar with network-centric computing as
they are with the Internet.

In addition to devices that provide services are devices that keep the net-
work going. Depending on the complexity of a network and its physical archi-
tecture, elements forming it may include network cards, routers, hubs, and
gateways. These terms are defined below.

® Network cards are hardware devices added to a computer to allow it
to talk to a network. The most common network card in use today is
the Ethernet card. Network cards usually connect to a network cable,
which is the link to the network and the medium through which data
is transmitted. However, other media exist, such as dial-up connections
through a phone line, and wireless links.

® Routers are machines that act as switches. These machines direct
packets of data to the next “hop” in their journey across a network.

® Hubs provide connections that allow multiple computers to access a
network (for example, allowing two desktop machines to access a local
area network).

® Gateways connect one network to another—for example, a local area
network to the Internet. While routers and gateways are similar, a
router does not have to bridge multiple networks. In some cases,
routers are also gateways.

While it is useful to understand such networking terminology as it is widely
used in networking texts and protocol specifications, programmers do not gen-
erally need to be concerned with the implementation details of a network and
its underlying architecture. However, it is important for programmers to be
aware of the various elements making up the network.
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1.2

How Do Networks Communicate?

Networks consist of connections between computers and devices. These con-
nections are most commonly physical connections, such as wires and cables,
through which electricity is sent. However, many other media exist. For exam-
ple, it is possible to use infrared and radio as a communication medium for
transmitting data wirelessly, or fiber-optic cables that use light rather than
electricity.

Such connections carry data between one point in the network and another.
This data is represented as bits of information (either “on” or “off,” a “zero”
or a “one”). Whether through a physical medium such as a cable, through the
air, or using light, this raw data is passed across various points in the network
called nodes; a node could represent a computer, another type of hardware
device such as a printer, or a piece of networking equipment that relays this
information onward to other nodes in the network or to an entirely different
network. Of course, for data to be successfully delivered to individual nodes,
these nodes must be clearly identifiable.

1.2.1 Addressing

Each node in a network is typically represented by an address, just as a street
name and number, town or city, and zip code identifies individual homes and
offices. The manufacturer of the network interface card (NIC) installed in such
devices is responsible for ensuring that no two card addresses are alike, and
chooses a suitable addressing scheme. Each card will have this address stored
permanently, so that it remains fixed—it cannot be manually assigned or mod-
ified, although some operating systems will allow these addresses to be faked
in the event of an accidental conflict with another card’s address.

Because of the wide variety of NICs, many addressing schemes are used.
For example, Ethernet network cards are assigned a unique 48-bit number to
distinguish one card from another. Usually, a numerical number is assigned to
each card, and manufacturers are allocated batches of numbers. This system
must be strictly regulated by industry, of course—two cards with the same
address would cause headaches for network administrators. The physical ad-
dress is referred to by many names (some of which are specific to a certain type
of card, while others are general terms), including:

e Hardware address

e Ethernet address

® Media Access Control (MAC) address
e NIC address
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1.2.2

These addresses are used to send information to the appropriate node. If two
nodes shared the same address, they would be competing for the same infor-
mation and one would inevitably lose out, or both would receive the same data.
Often, machines are known by more than one type of address. A network
server may have a physical Ethernet address as well as an Internet Protocol (IP)
address that distinguishes it from other hosts on the Internet, or it may have
more than one network card.

Within a local area network, machines can use physical addresses to com-
municate. However, since there are many types of these addresses, they are not
appropriate for internetwork communication. As discussed later in this chap-
ter, the IP address is used for this purpose.

Data Transmission Using Packets

Sending individual bits of data from node to node is not very cost effective,
as a fair bit of overhead is involved in relaying the necessary address informa-
tion every time a byte of data is transmitted. Most networks, instead, group
data into packets. Packets consist of a header and data segment, as shown in
Figure 1-1. The header contains addressing information (such as the sender and
the recipient), checksums to ensure that a packet has not been corrupted, as
well as other useful information that is needed for transmission across the net-
work. The data segment contains sequences of bytes, comprising the actual
data being sent from one node to another. Since the header information is
needed only for transmission, applications are interested only in the data seg-
ment. Ideally, as much data as possible would be combined into a packet, in
order to minimize the overhead of the headers. However, if information needs
to be sent quickly, packets may be dispatched when nearly empty. Depending
on the type of packet and protocol being used, packets may also be padded out
to fit a fixed length of bytes. ;

When a node on the network is ready to transmit a packet, a direct con-
nection to the destination node is usually not available. Instead, intermediary
nodes carry packets from one location to another, and this process is repeated
indefinitely until the packet reaches its destination. Due to network conditions
(such as congestion or network failures), packets may take arbitrary routes, and
sometimes they may be lost in transit or arrive out of sequence. This may seem
like a chaotic way of communicating, but as will be seen in later chapters, there
are ways to guarantee delivery and sequencing. Indeed, the properties of guar-
anteed delivery and sequential order are often irrelevant to certain types of
applications (such as streaming video and audio, where it is more important to
present current video frames and audio segments than to retransmit lost ones).
When these properties are necessary, networking software can keep track of
lost packets and out-of-sequence data for applications.



