xitangsEs 2z (S2EPRR)

JAVA NETWORK
PROGRAMMING AND
DISTRIBUTED COMPUTING

| Javai &
59%3Xits

David Reilly =
Michael Reilly

ATERF HihRtL

AF T HNKT E S F 4 HM AT (F AR

Java Network Programming and Distributed Computing

Java AR @it 55 B H

David Reilly
Michael Reilly

mEXFEHMKRA
I 3

English reprint edition copyright © 2004 by PEARSON. EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS.
Original English language title from Proprietor’ s edition of the Work.

Original English language title: Java Network Programming and Distributed Computing by David Reilly, Michael
Reilly, Copyright ©) 2002.
All Rights Reserved.

Published by arrangement with the original publisher, Addison-Wesley, publishing as Addison- Wesley.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).
AR ED RS Pearson Education (35423 H R) BA 43 1 42 K2t R L AR R AT o

For sale and distribution in the People’ s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

{LBRF e N R AE A EBE P R 4% b B | 34 AT B X eh [B i X)) 448 R 17
AR RAUR EEAA AEIE S B 01-2004-5637 &

RN ER A, BIED A5, ZIREIE. 010-62782989 13901104297 13801310933
A EHENH Pearson Education (B4 H HAER) BAHIRE, TREETEHE,

B M S% B (CIP) ¥iiE

Java W8RG 501 23158 = Java Network Programming and Distributed Computing/ (3%) #i#| (Reilly,
D.), (3€)#iF|(Reilly, M.)2 . —dJbm iK% H L, 2004, 10

(KRF BB T EIEZ B FRS))

ISBN 7-302-09767-4

Ll T.O#t...Q8t... ILIAVAESE—RNERTRI—R%ER—8M—8Ex V. TP312
H R R AS [AR CIP B8 857 (2004) 55 107001 5

H AR & EEKE Mo b dEEUEEREEDRE
http://www. tup. com. cn, BB, 45.7100084
B 010-62770175 SPEE% 010-62776969

: JER

s WWHRAREENRI

EXCIE w3

: BT E BB AR & AT Y

. 185x230 EP3k. 28.75

: 2004 4210 A28 1 f 2004 4F 10 A% 1 EDRI

: ISBN 7-302-09767-4/TP - 6744

. 1 ~4000

: 44.80 7

R R
S5 D 55 B O D D 3

A PUNFAESCTAE . WED A SR DT, 15T 58 0T B R e, AR R th Ak
ZUAH, BERHIE: (010)62770175-3103 5%(010)62795704

kit ¥t BA

A 21 S, HRAFEOZE. BEULSGEENDMORFREEMHRI. TR L
TRERMAAWFES . EHARBBRTOAL, EREEES PTREMS. RELF,
EREEFFRRFAA WF L, DRZAHEENL. HRERSFHFOEMEHER, b
TIREA R EFRAR, HE I EEKR TR E & ECR A E SN R B o

HHERE AL 1996 4F T4, SEER HRAR G, BEHR T “ KETHE
BEAB(RER) " F—RIG|IHEH, ZRENEEOIEM IR BA2 He, ®
MAE IR ERFHETEMERRSOVE, ECHEMLE, #—P9 KEBNE, &
BEBIFART, —MBEEMIEA T XhEEA TRERSAB IR ETEVHFTH
ESMZ B BE LB, ARAERETREYIEAFTEIELZEM RS (REBR)", U
MIEE . BUABEE R EAARFIBMOMRABE LR RARI. EFEEAE
K. BRPREBRINERZEIMTRIBEEFORE B, UARIEE KR ELEF @5
FERBMARII LR " MR EL, FESRRIPERNTE,

HERF R

PREFACE

Welcome to Java Network Programming and Distributed Computing. The goal
of this book is to introduce and explain the basic concepts of networking and
discuss the practical aspects of Java network programming.

This book will help readers get up to speed with network programming
and employ the techniques learned in software development. If you’ve had
some networking experience in another language and want to apply your
existing skills to Java, you’ll find the book to be an accelerated guide and a
comprehensive reference to the networking APL This book does not require
you to be a networking guru, however, as Chapters 1-4 provide a gentle intro-
duction to networking theory, Java, and the most basic elements of the Java
networking API. In later chapters, the Java APL is covered in greater detail, with

a discussion supplementing the documentation that Sun Microsystems provides
as a reference.

WhatYou'll Learn

In this book, readers will learn how to write applications in Java that make use
of network programming. The Java API provides many ways to communicate
over the Internet, from sending packets and streams of data to employing
higher-level application protocols such as HTTP and distributed computing
mechanisms.

Along the way, you’ll read about:

* How the Internet works, its architecture and the TCP/IP protocol stack

e The Java programming language, including a refresher course on topics
such as exception handling

¢ Java’s input/output system and how it works

* How to write clients and servers using the User Datagram Protocol
(UDP) and the Transport Control Protocol (TCP)

X Preface

¢ The advantages of multi-threaded applications, which allow network
applications to perform multiple tasks concurrently

* How to implement network protocols, including examples of
client/server implementations

¢ The HyperText Transfer Protocol (HTTP) and how to access the
World Wide Web using Java

¢ How to write server-side Java applications for the WWW

e Distributed computing technologies including remote method invo-
cation (RMI) and CORBA

* How to access e-mail using the extensive JavaMail API

WhatYou’ll Need

A reasonable familiarity with Java programming is required to get the most out
of this book. You’ll need to be able to compile and run Java applications and
to understand basic concepts such as classes, objects, and the Java APL
However, you don’t need to be an expert with respect to the more advanced
topics covered herein, such as I/O streams and multi-threading. All examples
use a text interface, so there’s no need to have GUI experience.

You’ll also need to install the Java SDK, available for free from Sun Micro-
systems (http://java.sun.com/j2se/). Java programmers will no doubt already
have access to the SDK, but readers should be aware that some examples in this
text will require JDK 1.1, and the advanced sections on servlets, RMI and
CORBA, and JavaMail will require Java 2.

A minimal amount of additional software is required, and most of the tools
for Java programming are available for free and downloadable via the WWW.
Chapter 2 includes an overview of Java development tools, but readers can also
use their existing code editor. Readers will be advised when examples feature
additional Sun Microsystems software.

Companion Web Site

As a companion to the material covered in this book, the book’s Web site of-
fers the source code in downloadable form (no need to wear out your fingers!),
as well as a list of Frequently Asked Questions about Java Networking, links
to networking resources, and additional information about the book. The site
can be found at

http://www.davidreilly.com/jnpbook/.

Preface Xi

Contacting the Authors

We welcome feedback from readers, be it comments on specific chapters or sec-
tions or an evaluation of the book as a whole. In particular, reader input about
whether topics were clearly conveyed and sufficiently comprehensive would be
appreciated. While we’d love to receive only praise, honest opinions are valued
(as well as suggestions about coverage of new networking topics).

Feel free to contact us directly. While we can’t guarantee an individual
reply, we’ll do our best to respond to your query. Please send questions and
feedback via e-mail to: jnpbook@davidreilly.com.

David Reilly and Michael Reilly
September 2001

ACKNOWLEDGMENTS

This book would not have been possible without the assistance of our peer
reviewers, who contributed greatly to improving its quality and allowing
us to deliver a guide to Java network programming that is both clear and
comprehensive. Our thanks go to Michael Brundage, Elisabeth Freeman, Bob
Kitzberge, Lak Ming Lam, Ian Lance Taylor, and John J. Wegis.

We’d like to make special mention of two reviewers who contributed
detailed reviews and offered insightful recommendations: Howard Lee
Harkness and D. Jay Newman. Most of all, we would like to thank Amy Fong,
whose thoroughness and invaluable suggestions, including questions that the
inquisitive reader might have about TCP/IP and Java, helped shape the book
that you are reading today.

We’d also like to thank our editorial team at Addison-Wesley, including
Karen Gettman, whose initial encouragement and persistence convinced us to
take on the project, Mary Hart, Marcy Barnes-Henrie, Melissa Dobson, and
Emily Frey. Their support throughout the process of writing, editing, and
preparing this book for publication is most heartily appreciated.

xiii

CONTENTS

Preface , xi
Acknowledgments xv
Chapter | Networking Theory /
1.1 What Is a Network? 1
1.2 How Do Networks Communicate? 3
1.3 Communication across Layers h)
1.4 Advantages of Layering 8
1.5 Internet Architecture 8
1.6 Internet Application Protocols 17
1.7 TCP/IP Protocol Suite Layers 19
1.8 Security Issues: Firewalls and Proxy Servers 21
1.9 Summary 24
Chapter 2 Java Overview 27
2.1 WhatIs Java? 27
2.2 The Java Programming Language 28
2.3 The Java Platform 34
2.4 The Java Application Program Interface 37
2.5 Java Networking Considerations 38
2.6 Applications of Java Network Programming 40
2.7 Java Language Issues 44
2.8 System Properties 50
2.9 Development Tools 51
2.10 Summary 53

Contents

Chapter 3
3.1
3.2
3.3
3.4
3.3

Chapter 4
4.1
4.2
4.3
4.4
4.5
4.6

Chapter 5
5.1
5.2
5.3
5.4
.75]
5.6
5.7
5.8
3.9

Chapter 6
6.1
6.2
6.3
6.4
6.5
6.6
6.7

Internet Addressing

Local Area Network Addresses

Internet Protocol Addresses

Beyond IP Addresses: The Domain Name System
Internet Addressing with Java

Summary

Data Streams

Overview

How Streams Work

Filter Streams

Readers and Writers

Object Persistence and Object Serialization
Summary

User Datagram Protocol
Overview

DatagramPacket Class
DatagramSocket Class

Listening for UDP Packets
Sending UDP Packets

User Datagram Protocol Example
Building a UDP Client/Server
Additional Information on UDP
Summary

Transmission Control Protocol
Overview

TCP and the Client/Server Paradigm
TCP Sockets and Java

Socket Class

Creating a TCP Client

ServerSocket Class

Creating a TCP Server

55
55
56
59
61
66

67
67
69
79
88
104
115

117
117
119
122
124
125
126
132
138
140

141
141
145
147
148
157
159
163

Contents

6.10 Exception Handling: Socket Specific Exceptions

6.11

Chapter 7
7.1
7.2
T
7.4
1oy
7.6
i g

Chapter 8
8.1
8.2
8.3
8.4

Chapter 9
9.1
9.2
9.3
9.4

Chapter 10
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Summary

Multi-threaded Applications
Overview

Multi-threading in Java
Synchronization
Interthread Communication
Thread Groups

Thread Priorities

Summary

Implementing Application Protocols
Overview

Application Protocol Specifications
Application Protocols Implementation
Summary

HyperText Transfer Protocol

Overview

HTTP and Java

The Common Gateway Interface (CGI)
Summary

Java Serviets

Overview

How Servlets Work

Using Servlets

Running Servlets

Writing a Simple Servlet
SingleThreadModel

ServietRequest and HttpServietRequest
ServietResponse and Http Response
ServletConfig

165
167

169
169
173
183
189
194
201
202

205
205
206
207
236

237
237
248
277
286

287
287
288
289
293
297
299
300
302
305

10.10 ServletContext

10.11

Servlet Exceptions

10.12 Cookies

10.13

HTTP Session Management in Servlets

10.14 Summary

Chapter | |
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
1.9
11.10
11.11

1112
11.13

Chapter |12
12.1
12.2
12.3
12.4
12.5

Chapter 13
L |
132

Remote Method Invocation (RMI)

Overview

How Does Remote Method Invocation Work?
Defining an RMI Service Interface
Implementing an RMI Service Interface
Creating Stub and Skeleton Classes

Creating an RMI Server

Creating an RMI Client

Running the RMI System

Remote Method Invocation Packages and Classes
Remote Method Invocation Deployment Issues

Using Remote Method Invocation
to Implement Callbacks

Remote Object Activation
Summary

Java IDL and CORBA

Overview _
Architectural View of CORBA
Interface Definition Language (IDL)
From IDL to Java

Summary

JavaMail
Overview
Installing the JavaMail API

306
308
308
312
314

315
315
317
320
321
323
323
326
328
329
349

356
365
376

379
379
380
383
387
396

399
400
401

Contents

vii

13.3 Testing the JavaMail Installation
13.4 Working with the JavaMail API
13.5 Advanced Messaging with JavaMail
13.6 Summary

402
404
427

438

CHAPTER |
Networking Theory

This chapter provides an overview of the basic concepts of networking and dis-
cusses essential topics of networking theory. Readers experienced with net-
working may choose to skip over some of these preliminary sections, although
a refresher course on basic networking concepts will be useful, as later chapters
presume a knowledge of this theory on the part of the reader. A solid under-
standing of the relationship between the various protocols that make up the
TCP/IP suite is required for network programming.

I.I What Is a Network?

Put simply, a network is a collection of devices that share a common commu-
nication protocol and a common communication medium (such as network
cables, dial-up connections, and wireless links). We use the term devices in this
definition rather than computers, even though most people think of a network
as being a collection of computers; certainly the basic concept of a network in
most peoples’ mind is of an assembly of network servers and desktop machines.
However, to say that networks are merely a collection of computers is to
limit the range of hardware that can use them. For example, printers may be
shared across a network, allowing more than one machine to gain access to
their services. Other types of devices can also be connected to a network; these
devices can provide access to information, or offer services that may be con-
trolled remotely. Indeed, there is a growing movement toward connecting non-
computing devices to networks. While the technology is still evolving, we’re
moving toward a network-centric as opposed to a computing-centric model.
Services and devices can be distributed across a network rather than being
bound to individual machines. In the same way, users can move from machine
to machine, logging on as if they were sitting at their own familiar terminal.

CHAPTER | Networking Theory

One fun and popular example from very early on in the history of net-
working is the soda machine connected to the Internet, allowing people around
the world to see how many cans of a certain flavor of drink were available.
While a trivial application, it served to demonstrate the power of networking
devices. Indeed, as home networks become easier to use and more affordable,
we may even see regular household appliances such as telephones, televisions,
and home stereo systems connected to local networks or even to the Internet.

Network and software standards such as Sun’s Jini already exist to help
devices and hardware talk to each other over networks and to allow instant
plug-and-play functionality. Devices and services can be added and removed
from the network (as, for example, when you unplug your printer and take it
to the next room) without the need for complex administration and config-
uration. It is anticipated that over the course of the next few years, users will
become just as comfortable and familiar with network-centric computing as
they are with the Internet.

In addition to devices that provide services are devices that keep the net-
work going. Depending on the complexity of a network and its physical archi-
tecture, elements forming it may include network cards, routers, hubs, and
gateways. These terms are defined below.

® Network cards are hardware devices added to a computer to allow it
to talk to a network. The most common network card in use today is
the Ethernet card. Network cards usually connect to a network cable,
which is the link to the network and the medium through which data
is transmitted. However, other media exist, such as dial-up connections
through a phone line, and wireless links.

® Routers are machines that act as switches. These machines direct
packets of data to the next “hop” in their journey across a network.

® Hubs provide connections that allow multiple computers to access a
network (for example, allowing two desktop machines to access a local
area network).

® Gateways connect one network to another—for example, a local area
network to the Internet. While routers and gateways are similar, a
router does not have to bridge multiple networks. In some cases,
routers are also gateways.

While it is useful to understand such networking terminology as it is widely
used in networking texts and protocol specifications, programmers do not gen-
erally need to be concerned with the implementation details of a network and
its underlying architecture. However, it is important for programmers to be
aware of the various elements making up the network.

1.2 How Do Networks Communicate? 3

1.2

How Do Networks Communicate?

Networks consist of connections between computers and devices. These con-
nections are most commonly physical connections, such as wires and cables,
through which electricity is sent. However, many other media exist. For exam-
ple, it is possible to use infrared and radio as a communication medium for
transmitting data wirelessly, or fiber-optic cables that use light rather than
electricity.

Such connections carry data between one point in the network and another.
This data is represented as bits of information (either “on” or “off,” a “zero”
or a “one”). Whether through a physical medium such as a cable, through the
air, or using light, this raw data is passed across various points in the network
called nodes; a node could represent a computer, another type of hardware
device such as a printer, or a piece of networking equipment that relays this
information onward to other nodes in the network or to an entirely different
network. Of course, for data to be successfully delivered to individual nodes,
these nodes must be clearly identifiable.

1.2.1 Addressing

Each node in a network is typically represented by an address, just as a street
name and number, town or city, and zip code identifies individual homes and
offices. The manufacturer of the network interface card (NIC) installed in such
devices is responsible for ensuring that no two card addresses are alike, and
chooses a suitable addressing scheme. Each card will have this address stored
permanently, so that it remains fixed—it cannot be manually assigned or mod-
ified, although some operating systems will allow these addresses to be faked
in the event of an accidental conflict with another card’s address.

Because of the wide variety of NICs, many addressing schemes are used.
For example, Ethernet network cards are assigned a unique 48-bit number to
distinguish one card from another. Usually, a numerical number is assigned to
each card, and manufacturers are allocated batches of numbers. This system
must be strictly regulated by industry, of course—two cards with the same
address would cause headaches for network administrators. The physical ad-
dress is referred to by many names (some of which are specific to a certain type
of card, while others are general terms), including:

e Hardware address

e Ethernet address

® Media Access Control (MAC) address
e NIC address

CHAPTER | Networking Theory

1.2.2

These addresses are used to send information to the appropriate node. If two
nodes shared the same address, they would be competing for the same infor-
mation and one would inevitably lose out, or both would receive the same data.
Often, machines are known by more than one type of address. A network
server may have a physical Ethernet address as well as an Internet Protocol (IP)
address that distinguishes it from other hosts on the Internet, or it may have
more than one network card.

Within a local area network, machines can use physical addresses to com-
municate. However, since there are many types of these addresses, they are not
appropriate for internetwork communication. As discussed later in this chap-
ter, the IP address is used for this purpose.

Data Transmission Using Packets

Sending individual bits of data from node to node is not very cost effective,
as a fair bit of overhead is involved in relaying the necessary address informa-
tion every time a byte of data is transmitted. Most networks, instead, group
data into packets. Packets consist of a header and data segment, as shown in
Figure 1-1. The header contains addressing information (such as the sender and
the recipient), checksums to ensure that a packet has not been corrupted, as
well as other useful information that is needed for transmission across the net-
work. The data segment contains sequences of bytes, comprising the actual
data being sent from one node to another. Since the header information is
needed only for transmission, applications are interested only in the data seg-
ment. Ideally, as much data as possible would be combined into a packet, in
order to minimize the overhead of the headers. However, if information needs
to be sent quickly, packets may be dispatched when nearly empty. Depending
on the type of packet and protocol being used, packets may also be padded out
to fit a fixed length of bytes. ;

When a node on the network is ready to transmit a packet, a direct con-
nection to the destination node is usually not available. Instead, intermediary
nodes carry packets from one location to another, and this process is repeated
indefinitely until the packet reaches its destination. Due to network conditions
(such as congestion or network failures), packets may take arbitrary routes, and
sometimes they may be lost in transit or arrive out of sequence. This may seem
like a chaotic way of communicating, but as will be seen in later chapters, there
are ways to guarantee delivery and sequencing. Indeed, the properties of guar-
anteed delivery and sequential order are often irrelevant to certain types of
applications (such as streaming video and audio, where it is more important to
present current video frames and audio segments than to retransmit lost ones).
When these properties are necessary, networking software can keep track of
lost packets and out-of-sequence data for applications.

