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Preface
to the Third Edition

This edition retains the same basic approach of the earlier editions of stress-
ing fundamentals; however, some changes have been made to reflect the
fact that increasingly often a digital filter course is the first course in electrical
" ‘engineering and the field of signal processing. To meet these needs two main
changes have been made: (1) the inclusion of more material on the z-trans-
form, which is often used in later courses (though the constant use of the
formalism tends to obscure the ideas behind the manipulations), and (2) the
inclusion of more examples and exercises. There are, of course, many minor
changes to clarify and adapt the material to current uses.

In the years since I wrote the first edition I have become increasingly
convinced of the need for a very elementary treatment of the subject of
digital filters. The need for an elementary introduction comes from the fact
that many of the pecple who most need the knowledge are not mathemati-
cally sophisticatéd and do not have an elaborate electrical engineering back-
ground. Thus this book assumes only a knowledge of the calculus and a
smattcring of statistics (which is reviewed in the text). It does not assume
any electrical engineering background knowledge. Actually, experience
seems to show that a prior knowledge of the corresponding theory of analog

filters often causes more harm than good! Digital filtering is not simply con-

verting from analog to digital filters; it is a fundamentally different way of
thinking about the topic of signal processing, and many of the ideas and
limitations of the analog method have no counterpart in the digital form.
The subject of digital filters is the natural introduction to the broad,
fundamental field of signal processing. The power and basic simplicity of
digital signal processing over the older analog is so great that whenever
possible we are converting present analog systems to an equivalent digital
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»i [ Preface to the Third Edition

form. But much more important, digital signaling allows fundamentally new
things to be done easily. The availability of modern integrated-circuit chips,
as well as micro- and minicomputers, has greatly expanded the application
of digital filters. : , .

Digital signals occur in many places. Th: telephone company is rapidly
converting to the use of digital signals to represent the human voice. Even
radio, television, and hi-fi sound systems are moving toward the all digital
methods since they provide such superior fidelity and freedom from noise,
as well as much more flexible signal processing. The space shots use digital
signaling to transmit the information from the planets back to Earth, in--
cluding the extremely detailed pictures (Which were often processed digitally
here on Earth to extract further information and to form alternate views of
what was originally captured by the cameras in space). Most records of
laboratory experiments are now recorded in digital form, from isolated mea-
surements using a digital voltmeter to the automatic recording of entire sets
of functions via a digital computer. Thus these signals are immediately ready
for digital signal processing to extract the message that the experiment was
designed to reveal. Economic data, from stock market prices and averages
to the Cost of Living Index of the Bureau of Labor Statistics, occur only in
digital form. :

Digital filtering includes the processes of smoothing, predicting, differ-
entiating, integrating, separation of signals, and removal of noise from a
signal. Thus many people who do such things are actually using digital filters
without realizing that they are; being unacquainted with. the theory, they
neither understand what they have done nor the possibilities of what they
might have done. Computer people very often find themselves involved in
filtering signals when they have had no appropriate training at all. Their
needs are especially catered to in this book. '

Because the same ideas arise in many fields there are many Cross con-
nections between the fields that can be exploited. Unfortunately each field
seems to go its own way (while reinventing the wheel) and to develop its
own jargon for exactly the same ideas thaf are used elsewhere. One goal of
this revision is to expose and reduce this elaborate jargon equivalence from
the various fields of application and to provide a unified approach to the
whole field. We will 'gdppt the simplest, most easily understood words to
describe what is going on and exhibit lists of the equivalent words from
related fields. We will also use only the simplest, most direct mathematical
tools and shun fancy mathematics whenever possible.

This book concentrates on linear signal processing; the main exceptions
are the examination of roundoff effects and a brief mention of Kalman filters,
which adapt themselves to the signal they are receiving.

The fundamental tool of digital filtering is the frequenicy approach,
which is based on the use of sines and cosines rather than on the use of -
polynomials (as is conventional in many fields such as numerical analysis



R

*

Preface to the Third Edition [ xiii

and much of statistics). The frequency approach, which leads to the spec-
trum, has been the principal method of opening the black boxes of nature.
Examples run from the early study of the structure of the atom (using spectral
lines as the observations) through quantum mechanics (which arose from
the study of the spectrum of black-body radiation) to the modern methods
of studying a system (for purposes of modeling and control) via the spectrum
of the output as it is related to the input.

There appears to be a deep emotional resistance to the frequency ap-
proach. And even electrical engineers who use it daily often have only a
slight understanding of why they are using the eigenfunction approach and
the role of the eigenvalues. In numerical analysis there is almost complete
antipathy to the frequency approach, while in statistics there is a great fond-
ness for polynomials (without ever examining the question of which set of
functions is appropriate). This book shows clearly why the sines and cosines
are the natural, the proper, the characteristic functions to use in many sit-
uations. It also approaches cautiously the usual traumatic experience (for
most people) of going from the real sines and cosines to the complex ex-
ponentials with the mysterious V — 1; their greater convenience in use even-
tually compensates for the initial troubles and provides more insight.

The text includes an accurate (but not excessively rigorous) introduction
to the necessary mathematics. In each case the formal mathematics is post-
poned until the need for it is clearly seen. We are interested in presenting
the ideas of the field and will generally not give the ‘‘best’ methods for
designing very complex filters; in an elementary course it is proper to give
elementary, broadly applicable design methods, and then show how these
can be refined to meet a very wide range of design criteria. Because it is an
elementary text, references to advanced papers and books are of little use
to the readér. Instead we refer to a few standard texts where more advanced
material and references can be found. The references to these books are
indicated in the text by [L,p], where L is the book label given at the end of
this book, and p is the page(s) where it can be found. References [IEEE-1
and 2] give a complete bibliography for most topics that arise.

There is a deliberate repetition in the presentation of the material. Ex-
perience shows that the learner often becomes so involved in the immediate
details of desigring a filter that where and how the topic fits into the whole
plan is lost. Furthermore, confusion often arises when the same ideas and
mathematical tools are used in seemingly very different situations. It is also
true that filters are designed fo process data, but experience shows that the
display of large sets of data that have been processed communicates very
little to the beginner. Thus such plots are seldom given, even though the
learner needs to be reminded that the ultimate test of a filter is how well it
processes a signal, not how elegant the derivation is.

As always an author is deeply indebted to others, in this case to his
many colleagues at Bell Laboratories. Special mention should go to Pro-
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fessor J, W. Tukey (of Princeton University) and to J. F. Kaiser. who first
taught him most of what is presented here. Thanks are also due to Roger
Pinkham and the many students of the short courses who used the first two
editions; their questions and reactions have been important in many places
of this revision. They have also strengthened the author’s belief in the basic
rightness of giving as simple an approach as possible and of keeping rigorous
mathematics in its proper place. Finally, thanks are due-to the Naval Post-
graduate School for providing an atmosphere suitable for thinking deeply
about the problems of teaching.

R. W. Hamming
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Introduction

1.1 WHAT IS A DIGITAL FILTER?

In our current technical society we often measure a continuously varying
quantity. Some examples include blood pressure, earthquake displacements,
voltage from a voice signal in a telephone conversation, brightness of a star,
population of a city, waves falling on a beach, and the probability of death.
All these measurements vary with time; we regard them as functions of time:
u(t) in mathematical notation. And we may be concerned with blood pressure
measurements from moment to moment or from year to year. Furthermore,
we may be concerned with functions whose independent variable is not time,
for example the number of particles that decay in a physics experiment as
a function of the energy of the emitted particle. Usually these variables can
be regarded as varying continuously (analog signals) even if, as with the
population of a city, a bacterial colony, or the number of particles in the
physics experiment, the number being measured must change by unit
amounts. i

For technical reasons, instead of the signal u(r), we usually record
equally spaced samples u, of the function u(¢). The famous sampling theo-
rem, which will be discussed in Chapter 8, gives the conditions on the signal
that justify this sampling process. Moreover, when the samples are taken
they are not recorded with infinite precision but are rounded off (sometimes

chopped off) to comparatively few digits (see Figure 1.1-1). This procedure

is often called quantizing the samples. It is these quantized samples that are
available for the processing that we do. We do the processing in order to
understand what the function samples u, reveal about the underlying phe-
nomena that gave rise to the observations, and digital filters are the main
processing tool. ) :



2 / Ch. 1 Introduction

ult)

Ficure 1.1-1 SAMPLING AND QUANTIZATION OF A SIGNAL

It is necessary to emphasize that the samples are assumed to be equally
spaced; any error or noise is in the measurements u,. Fortunately, this
assumption is approximately true in most applications.

Suppose that the sequence of numbers {u,} is such a set of equally
spaced measurements of some quantity u(¢), where n is an integer and ? is
a continuous variable. Typically, t represents time, but not necessarily so.
We are using the notation u, = u(n). The simplest kinds of filters are the
nonrecursive filters; they are defined by the linear formula

Yn = D Ciklln—k (1.1-1)

k= —x

The coefficients c, are the constants of the filter, the u,_, are the input
data, and the y, are the outputs. Figure 1.1-2 shows how this formula is
computed. Imagine two strips of paper. On the first strip, written one below
the other, are the data values u,_,. On the second strip, with the values
written in the reverse direction (from bottom to top), are the filter coefficients
cx. The zero subscript of ene is opposite the n subscript value of the other
(either way). The output y, is the sum of all the products Cilln—x. Having
computed one value, one strip, say the coefficient strip, is moved one space
down, and the new set of products is computed to give the new output y,,, ;.

. Each output is the result of adding all the products formed from the proper
dxsplacement between the two zero-subscripted terms. In the computer, of
course, it is the data that is ‘‘run past’ the coefficient array {c.}.

This process is basic and is called a convolution of the data with the
coefficients. It does not matter which strip is written'in the reverse order;
the result.is the same. So the convolution of u, with the coefficients ¢ is
the same as-the convolution of the coefficients c; with the data Up. ’

“In practice, the number of products we can handle must be finite. It is
usual to assume that the length of the run of nonzero coefficients ¢, is much
shorter than is the run of data y,. Once in a while it is useful to regard the
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FiGure 1.1-2 A NONRECURSIVE DiGITAL FILTER

c coefficients as part of an infinite array with many zero coefficients, but
it is usually preferable to think of the array {c;} as being finite and to igrore
the zero terms beyond the end of the array. Equation (1.1-1) becomes, there-
fore,

N
Yn = X Ciklln—x 1.1-2)

k=-N

Thus the second strip (of coefficients c,) in Figure 1.1-2 is comparatively
shorter than is the first strip (of data u,).

Various special cases of this formula occur frequently and should be
familiar to most readers. Indeed, such formulas are so commonplace that a
book could be devoted to their listing. In the case of five nonzero coefficients
¢k, where all the coefficients that are not zero have the same value, we have
the familiar smoothing by 5s formula (derived in Section 3.2)

v yn‘ = i(un—Z + Up1 * Ut U T+ un+2) (11'3)
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Another example is the least-squares smoothing formula derived by passing
a least-squares cubic through five equally spaced values «, and using the
value of the cubic at the midpoint as the smoothed value. The formula for
this smoothed value (which will be derived in Section 3.3) is

Vo = 3 =3Unz + 12Uny + 1TUn + 120psy = 3Unsz) (1.1-4)

Many other formulas, such as those for predicting stock market prices, as

well as other time series, also are nonrecursive filters. '
Nonrecursive filters occur in many different fields and, as a result, have

acquired many different names. Among the disguises are the following:

Finite impulse response filter
FIR filter

Transversal filter

Tapped delay liﬁe filter

Moving average filter

We shall use the name nonrecursive as it is the simplest to understand from
its name, and it contrasts with the name recursive filter, which we will soon
introduce. _

The concept of a window is perhaps the most confusing concept in the
whole subject, so we now introduce it in these simple cases. We can think
of the preceding formulas as if we were looking at the data u,_, through a
window of coefficients ¢, (see Figure 1.1-3). As we slide the strip of coef-
ficients along the data, we see the data in the form of the output y,, which

R

o SMOOTHING BY 55 WINDOW

>~ 1 . 1 - . -
' LEAST-SQUARES CUBIC WINDOW

FIGURE 1.1-3 Winpows
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is the running weighted average of the original data u,. It is as if we saw
the data through a translucent (not transparent) window where the window
was tinted according to the coefficients c,. In the smoothing by 5s, all data
values get through the translucent window with the same amount, {; in the
second example they come through the window with varying weights. (Don’t
let any negative weights bother you, since we are merely using a mianner of
speaking when we use the words ‘‘translucent window.”’)

When we use not only data values to compute the output values y,, but
also use other values of the output, we have a formula of the form

Yn = 2 Crlhpn—x + E diYn—&

where both the ¢4 and the d, are constants. In this case it is usual to limit
‘the range of nonzero coefficients to current and past values of the data Uy
and to only past values of the output y,. Furthermore, again the number of
products that can be computed in practice must be finite. Thus the formula
is usually written in the form

N M
Yn = 2 Chttn—k + 2 diyn-s (1.1-5)
0 1

where there may be some zero coefficients. These are called recursive filters
(see Figure 1.1-4). Some equivalent names follow:
Infinite impulse response filter
IIR filter
Ladder filter
f_attice filter
Wave digital filter
Autoregressive moving average filter
ARMA filter
Autoregressive integrated moving average filter
ARIMA filter

We shall use the name recursive filter. A recursive digital filter is simply a
linear difference equation with constant coefficients and nothing more; in
practice it may be realized by a short program on a general purpose digital
computer or by a special purpose integrated circuit chip.




