Titanium Powder Metallurgy

Science, Technology and Applications

EDITED BY

MA QIAN FRANCIS H. FROES

Titanium Powder Metallurgy

Science, Technology and Applications

Ma Qian

RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Centre for Additive Manufacture, Melbourne, Victoria, Australia

Francis H. (Sam) Froes
Consultant to the Titanium Industry, Tacoma,
WA, USA

Butterworth-Heinemann is an imprint of Elsevier 225 Wyman Street, Waltham, MA 02451, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

Copyright © 2015 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Qian, Ma, author.

Titanium powder metallurgy / by Ma Qian, Francis H. Froes. – First edition.

pages cm

Includes bibliographical references and index.

ISBN 978-0-12-800054-0

1. Powder metallurgy. 2. Titanium alloys. I. Froes, F. H., author. II. Title.

TN697.T5Q27 2015 669'.7322-dc23

2014034817

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

For information on all Butterworth-Heinemann publications visit our website at http://store.elsevier.com/

This book has been manufactured using Print On Demand technology. Each copy is produced to order and is limited to black ink. The online version of this book will show color figures where appropriate.

ISBN: 978-0-12-800054-0

List of contributors

Stanley Abkowitz Dynamet Technology, Inc. (now RTI Advanced Powder Materials a unit of RTI International)

Susan Abkowitz Dynamet Technology, Inc. (now RTI Advanced Powder Materials a unit of RTI International)

Kamal Akhtar Director of Technology and Quality, Cristal Metals Inc., Lockport, IL, USA

Kerem Araci Process Development Engineer, Technology and Quality, Cristal Metals Inc., Lockport, IL, USA

Daniel P. Barbis AMETEK Specialty Metal Powders

Christopher C. Berndt Industrial Research Institute Swinburne, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Australia; Department of Materials Science and Engineering, Stony Brook University, NY, USA

R.R. Boyer Retired Boeing Technical Fellow, Seattle, WA, USA

G.M.D. Cantin CSIRO Process Science and Engineering, Clayton South MDC, Victoria, Australia

Joseph A. Capone AMETEK Specialty Metal Powders

Richard R. Chromik Department of Mining and Materials Engineering, McGill University, Montréal, Québec, Canada

L.P. Clark Retired Boeing, Phoenix, AZ, USA

Melchiorre Conti Metalysis Limited, Wath-upon-Dearne, Rotherham, United Kingdom

James Deane Metalysis Limited, Wath-upon-Dearne, Rotherham, United Kingdom

Greg Doughty Metalysis Limited, Wath-upon-Dearne, Rotherham, United Kingdom

B. Dutta DM3D Technology, Auburn Hills, MI, USA

xiv List of contributors

Z. Zak Fang Department of Metallurgical Engineering, University of Utah, Salt Lake City, UT, USA

Thomas Ebel Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Geesthacht, Germany

Sami M. El-Soudani Associate Technical Fellow, The Boeing Company, Huntington Beach, CA, USA

Harvey Fisher Dynamet Technology, Inc. (now RTI Advanced Powder Materials a unit of RTI International)

V. Friederici Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, Bremen, Germany

Francis H. (Sam) Froes Consultant to the Titanium Industry, Tacoma, WA, USA

Jo Ann Gan Industrial Research Institute Swinburne, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Australia; Research Services, La Trobe University, Melbourne, Australia

Robert M. Gasior AMETEK Specialty Metal Powders

Randall M. German Professor, Mechanical Engineering, San Diego State University, San Diego, CA, USA

M.A. Gibson CSIRO Process Science and Engineering, Clayton South MDC, Victoria, Australia

Dina Goldbaum Department of Mining and Materials Engineering, McGill University, Montréal, Québec, Canada

Lucy Grainger Metalysis Limited, Wath-upon-Dearne, Rotherham, United Kingdom

- **T. Hartwig** Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, Bremen, Germany
- M. Ashraf Imam Materials Science and Technology Division, Naval Research Laboratory, Washington DC, USA
- **P. Imgrund** Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, Bremen, Germany

Eric Irissou National Research Council Canada, Boucherville, Québec, Canada

Orest Ivasishin Institute for Metal Physics, Kiev, Ukraine

List of contributors xv

Mingtu Jia Waikato Centre for Advanced Materials, School of Engineering, The University of Waikato, Hamilton, New Zealand

Katsuyoshi Kondoh Osaka University, Joining and Welding Research Institute (JWRI), Ibaragi, Osaka, Japan

Jean-Gabriel Legoux National Research Council Canada, Boucherville, Québec, Canada

Bin Liu State Key Lab of Powder Metallurgy, Central South University, Changsha, P.R. China

Yong Liu State Key Lab of Powder Metallurgy, Central South University, Changsha, P.R. China

Shudong D. Luo The University of Queensland, School of Mechanical and Mining Engineering, Brisbane, Australia

Damien Mangabhai Quality Superintendent, Technology and Quality, Cristal Metals Inc., Ottawa, IL, USA

Ian Mellor Metalysis Limited, Wath-upon-Dearne, Rotherham, United Kingdom

Vladimir Moxson ADMA Products, Inc., Hudson, OH, USA

James D. Paramore Department of Metallurgical Engineering, University of Utah, Salt Lake City, UT, USA

Ma Qian RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Centre for Additive Manufacture, Melbourne, Victoria, Australia

Kartik Rao Metalysis Limited, Wath-upon-Dearne, Rotherham, United Kingdom

V. Samarov President, LNT PM Inc. (Laboratory of New Technologies)

Teddi S. Schaeffer AMETEK Specialty Metal Powders

D. Seliverstov President, LNT PM Inc. (Laboratory of New Technologies)

Pei Sun Department of Metallurgical Engineering, University of Utah, Salt Lake City, UT, USA

H.P. Tang State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an, China

David S. van Vuuren The CSIR, PO Box 395, Pretoria, South Africa

xvi List of contributors

Dion Vaughan Metalysis Limited, Wath-upon-Dearne, Rotherham, United Kingdom

Phuong Vo National Research Council Canada, Boucherville, Québec, Canada

Graham P. Walker AMETEK Specialty Metal Powders

J. Wang State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an, China

David Whittaker DW Associates 231, Coalway Road, Merryhill Wolverhampton, United Kingdom

J.C. Williams Professor Emeritus, The Ohio State University, Columbus, OH, USA

James C. Withers Materials & Electrochemical Research (MER) Corporation, Tucson, AZ, USA

Wilson Wong Department of Mining and Materials Engineering, McGill University, Montréal, Québec, Canada

X. Wu ARC Centre for Design in Light Metals, Monash University, Melbourne, Australia

Ming Yan RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Centre for Additive Manufacture, Melbourne, Victoria, Australia

Ya F. Yang RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Centre for Additive Manufacturing, Melbourne, Victoria, Australia

C.F. Yolton CTO, Summit Materials LLC, McDonald, PA, USA

Stephen Yue Department of Mining and Materials Engineering, McGill University, Montréal, Québec, Canada

Deliang Zhang State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

About the editors

Dr. Ma Qian is Professor and Deputy Director of the Centre for Additive Manufacturing of RMIT University (Royal Melbourne Institute of Technology), Australia. He received his BSc (1984), MSc (1987), and PhD (1991) all from the University of Science and Technology Beijing. He then worked as a postdoctoral research fellow and lecturer with Tsinghua University Beijing from 1991 to 1994. Before joining RMIT University in 2013, he was a Reader in Materials Engineering (2008-2013) and leader of the Powder Metallurgy Group at the University of Queensland, Australia. Prior to that, he worked as a researcher or academic with several other institutions in Japan, Singapore, Australia, and the United Kingdom. He has more than 200 peerreviewed publications, with about half focused on titanium powder metallurgy (PM) and additive manufacturing of titanium alloys. Recent publications include understanding the effect of oxygen on the ductility of as-sintered Ti-6Al-4V (Acta Mater. 68 (2014) 196-206), Additive manufacturing of strong and ductile Ti-6Al-4V (Acta Mater. 85 (2015) 74-84) and understanding the impacts of trace carbon on the microstructure of as-sintered biomedical Ti-15Mo (Acta Biomater. 10 (2014) 1014-1023). He initiated the Titanium PM conference in 2011, cosponsored by Materials Australia, the Minerals, Metals & Materials Society (TMS), Japan Society of Powder and Powder Metallurgy (JSPM), Titanium Industry Development Association (TiDA), and the PM Branch of China Society for Metals (CSM). He was leader organizer for the TMS Symposium Novel Synthesis and Consolidation of Powder Materials (2013 and 2015). Currently he serves as a board member of the Asian Powder Metallurgy Association (APMA) and an editorial/review/advisory board member of a number of journals including Metallurgical and Materials Transactions A, JOM, Powder Metallurgy, International Journal of Powder Metallurgy, Korean Journal of Powder Metallurgy, Acta Metallurgica Sinica (English Letters), and Powder Metallurgy Technology. He is also advisory editor to Elsevier on powder materials science and engineering.

Dr. Francis H. (Sam) Froes has been involved in the Titanium field with emphasis on powder metallurgy (PM) for more than 40 years. After receiving a BSc (Liverpool University) and an MSc and PhD (from Sheffield University) he was employed by a primary titanium producer, Crucible Steel Company, where he was leader of the titanium group and led a major effort on PM titanium under US Air Force (USAF) funding. He then spent time at the USAF Materials Lab, where he was supervisor of the Light Metals group (which included titanium) and again involved an emphasis on PM. While at the USAF Laboratory, he coorganized a landmark TMS-sponsored Conference on Titanium PM (1980) and presented the keynote speech at the first International Titanium Association Conference in 1984. This was followed by 17 years at the University of Idaho, where he was a director and department head of the

xviii About the editors

Materials Science and Engineering Department, again leading a number of programs on titanium PM. During this tenure, he was the Chairman of the World Titanium Conference held in San Diego in 1992. He has more than 800 publications, in excess of 60 patents, and has edited almost 30 books – the majority on various aspects of titanium. Recent publications include a comprehensive review of titanium PM and an article on titanium additive manufacturing. Since the early 1980s, he has taught the ASM International course on "Titanium and Its Alloys." He has organized more than 10 symposia on various aspects of Titanium Science and Technology, including in recent years cosponsored four TMS Symposia on Cost Effective Titanium (which included a large number of papers on titanium PM). He is a Fellow of ASM and a member of the Russian Academy of Science, and he was awarded the Service to Powder Metallurgy by the Metal Powder Association.

Preface

The first known research effort of titanium powder metallurgy (PM) was made by Dr Kroll (W. Kroll, Verformbare Legierungen des Titans, Z Metallkunde, 29 (1937) 189-192). In the work published, Dr Kroll compacted and sintered 14 different binary titanium alloys (Mo, W, Ni, Fe, Co, Be, Si, Mn, Cr, Cu, Al, Zr, V, and Ta with one addition for each element in the range of 2-9 wt%) in argon soon after he was able to produce about 0.5 kg batches of sponge fines in 1937. Thanks to the persistent development of the Kroll process since 1937 (Dr Kroll switched to the magnesium approach from the calcium in late 1937), titanium as a metal of industrial stature was established in 1948 in the United States, marked by world's first high-quality sponge production by DuPont (3 metric tons of >99% pure sponge in 1948) and the 1st Titanium Symposium in Washington, DC, held also in 1948. Although more than seven decades have passed, the high cost of titanium components still limits its usage compared to the lower-cost structural material options such as steel and aluminum alloys. A major proportion of this high cost is associated with the machining of wrought products to final configurations, suggesting that fabrication of near-net shaped titanium products could lead to dramatically increased use. In that regard, PM techniques remain to be an attractive solution to the production of cost-effective near-net shaped titanium components. In addition, it offers the potential for rapid turnaround prototype parts, manufacture of complex parts without having to make dies or molds, and a method for repairing mismachined parts or worn parts. Another important advantage is that Powder Metallurgy (PM) offers the potential of producing alloys that could not be produced via ingot metallurgy due to segregation problems.

The purpose of this book is to review the developments of titanium PM technologies to date. The subjects covered include titanium powder production methods, including both well-established and developing potential lower-cost approaches, and various near-net-shape-forming PM techniques, including the blended elemental approach, the prealloyed plus hot isostatic pressing method, additive manufacturing, metal injection molding, and spray forming. The last two chapters discuss the current and future markets for Ti PM and the editors' perspectives on the future of Ti PM. In total, the field has been covered in a comprehensive manner and we hope that this effort could help in bringing titanium components made from powder into widespread use in the future.

Ma Qian

RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Centre for Additive Manufacture, Melbourne, Victoria, Australia

Francis H. (Sam) Froes

Consultant to the Titanium Industry, Tacoma, WA, USA

Contents

About the editors Preface		xvii xix	
1	A historical perspective of titanium powder metallurgy		1
		cis H. (Sam) Froes	1
	1.1	Introduction	1
		The early years (late 1940s to early 1950s)	2
		The 1980 TMS Conference	2 5
		Developments 1980–present	
		Developments in the PA/HIP technology	6
	1.6	The BE method	13
	1.7	Metal injection molding	13
		Additive manufacturing Other developments	16
		Research-based processes	16
		The 2011 conference on titanium PM	17
	1.12	Thoughts for the future	18
2	C.F. Y 2.1	entional titanium powder production Volton, Francis H. (Sam) Froes Introduction	21 21
		Prealloyed spherical powder (conventional	21
		titanium powder production)	21
		Gas atomization	22
		Plasma rotating electrode process	24
		Electrode induction—melting gas atomization	26
		Plasma atomization	28
		Induction plasma spheroidization Conclusions	28 31
	2.8	Conclusions	31
3	Production of titanium powder by an electrolytic method		
		compaction of the powder s C. Withers	33
	3.1	Introduction	33
	3.2	New and advanced processing	35
	3.3	Electrolytic production of titanium powder	37
	3.4	Titanium alloy powder	38
	3.5	Compaction of electrolytically produced titanium powder	41

4		nium powder production via the Metalysis process	51
	Ian Mellor, Lucy Grainger, Kartik Rao, James Deane, Melchiorre Conti,		
	_	Doughty, Dion Vaughan	
		Introduction	51
	4.2	FFC® process overview	52
	4.3	Preforms: evolution to elimination	54
	4.4	Titanium alloys via the FFC® process	56
	4.5	Metalysis titanium powder characterization	58
	4.6	Additive manufacturing (AM)	60
	4.7	Hot isostatic pressing	62
	4.8	Spark plasma sintering (SPS) and hot rolling	64
	4.9	Summary	65
5		ct titanium powder production by metallothermic processes	69
		d S. van Vuuren	20
		Introduction	69
		Precursors	69
		Reducing agents	73
		Reactor type	77
	5.5	Separation principle	81
		Recent developments	82
	5.7	Concluding remarks	89
6		arch-based titanium powder metallurgy processes	95
		cis H. (Sam) Froes	
		Introduction	95
		Rapid solidification, mechanical alloying, and vapor deposition	95
	6.3		95
	6.4	Porous structures	97
7		nium powders from the hydride-dehydride process	101
		el P. Barbis, Robert M. Gasior, Graham P. Walker,	
	_	ph A. Capone, Teddi S. Schaeffer	
	7.1	Introduction	101
	7.2	HDH titanium feedstock	101
	7.3		102
	7.4	7 01	103
	7.5	The dehydriding process	107
	7.6	Dehydride recovery	107
	7.7	Magnetic separation and acid washing	108
	7.8	Interstitial contents	108
	7.9	Screening and screen specifications	110
	7.10	Laser specifications	111
	7.11	Powder morphologies	112
	7.12	Spherical powders	114
	7.13	Summary	115

Contents

8	Low-	cost titanium hydride powder metallurgy	117
	Oresi	t Ivasishin, Vladimir Moxson	
	8.1	Introduction	117
	8.2	Titanium hydride: physical and mechanical properties	
		and phase transformations upon heating	119
	8.3	Surface contamination of titanium hydride powder	124
	8.4	PM processing of CP Ti	128
	8.5	BEPM processing of titanium alloys	130
	8.6	Production of hydrogenated titanium powder	138
	8.7	Scaling up titanium hydride powder metallurgy	141
9	Prod	uction of titanium by the Armstrong Process®	149
	Kerei	n Araci, Damien Mangabhai, Kamal Akhtar	
	9.1	Process overview	149
	9.2	Powder characteristics	149
	9.3	Compaction	154
	9.4	Densification	158
	9.5	Spheroidization	160
10	Hydr	rogen sintering of titanium and its alloys	163
	Jame	s D. Paramore, Z. Zak Fang, Pei Sun	
	10.1	Introduction	163
	10.2	Background and history	164
	10.3	HSPT process description	170
	10.4	Typical results	172
	10.5	Cost and energy savings	176
	10.6	Conclusions	177
11	Warı	n compaction of titanium and titanium alloy powders	183
	Mingtu Jia, Deliang Zhang		
	11.1	Introduction	183
	11.2	Warm compaction process	185
	11.3	Compaction pressure	187
	11.4	Compaction temperature	188
	11.5	Particle shape effects on Ti powder warm compaction	192
	11.6	Mechanical properties of sintered titanium and titanium	
		alloy powder compacts produced by warm compaction	195
	11.7	Applications	198
12	Press	sureless sintering of titanium and titanium alloys:	
	sintering densification and solute homogenization		201
	Ma Q	ian, Ya F. Yang, Shudong D. Luo, H.P. Tang	
	12.1	Introduction	201
	12.2	Stability of the surface titanium oxide film	202
	12.3	Sintering of CP-Ti	204

	12.4	Sintering of Ti-10V-2Fe-3Al	205
	12.5	Sintering of Ti-6Al-4V	213
	12.6	Enhanced densification with sintering aids	214
	12.7	Conclusion remarks	216
13	Spar	k plasma sintering and hot pressing of titanium	
	and t	itanium alloys	219
	Ya F.	Yang, Ma Qian	
		Introduction	219
		HP of CP-Ti and Ti-6Al-4V	219
		SPS of CP-Ti	223
		SPS of Ti-6Al-4V from EMA powder mixtures and PA powder	227
	13.5		233
	13.6	Conclusion remarks	233
14	Micr	owave sintering of titanium and titanium alloys	237
		ong D. Luo, Ma Qian, M. Ashraf Imam	
	14.1	Introduction	237
	14.2	Heating of metal powders by microwaves	238
	14.3	Heating of Ti powder by microwaves	238
	14.4	Sintering densification	240
	14.5	Mechanical properties	242
	14.6	Microwave heating and sintering of titanium hydride powder	245
	14.7	Summary	248
15		enging of oxygen and chlorine from powder metallurgy	
		titanium and titanium alloys	253
		Yan, H.P. Tang, Ma Qian	
	15.1	Introduction	253
	15.2	The effect of oxygen on ductility of Ti materials	255
	15.3	Scavenging of oxygen from PM Ti and Ti alloys	256
	15.4	Impact of chlorine on PM Ti materials	265
	15.5	Scavenging of chlorine from PM Ti and Ti alloys	265
	15.6	Scavenging of oxygen in additively manufactured	270
	157	Ti alloys and reaction kinetics	270
	15.7	Concluding remarks	270
16		ium metal matrix composites by powder metallurgy	*
		routes	277
		yoshi Kondoh	
	16.1	Introduction	277
	16.2	Materials design and processing of TMCs	278
	16.3	Carbon fiber-reinforced TMCs	286
	16.4	Atomic-scale reinforced TMCs with solute	00=
		light elements	287

Contents

17	Titanium alloy components manufacture from blended			
	elem	ental powder and the qualification process	299	
	Stanley Abkowitz, Susan Abkowitz, Harvey Fisher			
	17.1	Introduction	299	
	17.2	The CHIP PM process	300	
	17.3	Titanium metal matrix composites	303	
	17.4	Commercial products	306	
	17.5	The Boeing qualification process	309	
	17.6	Industry specification for PM titanium alloys	310	
	17.7	The shape-making capability	311	
	17.8	Conclusions	312	
18	Fabr	ication of near-net-shape cost-effective titanium components		
	by us	e of prealloyed powders and hot isostatic pressing	313	
	V. Sai	marov, D. Seliverstov, Francis H. (Sam) Froes		
	18.1	Introduction	313	
	18.2	The ceramic mold process	313	
	18.3	The metal can process	313	
	18.4	Problems and solutions	322	
	18.5	Analysis and conclusions	334	
19	Meta	l injection molding of titanium	337	
	Thomas Ebel, V. Friederici, P. Imgrund, T. Hartwig			
	19.1	The MIM process and market	337	
	19.2	Titanium MIM	339	
	19.3	Powders and powder handling	340	
	19.4	Binder systems	342	
	19.5	Debinding and sintering	343	
	19.6	Properties of specific alloys processed by MIM	344	
	19.7	Perspectives	356	
20	Powe	ler-processing linkages to properties for complex		
	titan	ium shapes by injection molding	361	
	Rand	all M. German		
	20.1	Introduction	361	
	20.2	Powders for Ti-MIM	362	
	20.3	Key Ti-MIM success factors	364	
	20.4	Optimized Ti-MIM processing	367	
	20.5	Components design factors	372	
	20.6	Summary	373	
21	Titanium sheet fabrication from powder			
	G.M.D. Cantin, M.A. Gibson			
	21.1	Introduction	383	
	21.2	Direct powder rolling and consolidation	384	
	21.3	Summary	399	

22	Cold-spray processing of titanium and titanium alloys Phuong Vo, Dina Goldbaum, Wilson Wong, Eric Irissou, Jean-Gabriel Legoux, Richard R. Chromik, Stephen Yue		405	
		Introduction	405	
		Process description	407	
		Cold-spray principles	408	
		Properties of deposited material	410	
	22.5		414	
	22.6		417	
	22.7	Status and future	419	
23	Ther	mal spray forming of titanium and its alloys	425	
	Jo Ar	Jo Ann Gan, Christopher C. Berndt		
	23.1	Introduction to thermal spray	425	
	23.2	Titanium and titanium alloy feedstock characteristics	426	
	23.3	Deposition of titanium and titanium alloy coatings	428	
	23.4	Microstructure of titanium coatings	437	
	23.5		439	
	23.6	Summary	440	
24		additive manufacturing (AM) of titanium alloys	447	
		atta, Francis H. (Sam) Froes	200	
	24.1	Introduction	447	
	24.2	Technology overview	449	
	24.3	11	453	
	24.4	The STOLE A Purification of the STOLE STOL	458	
		Economics of AM	460	
		Research and development	463	
	24.7	Summary	465	
25	Powder-based titanium alloys: properties and selection Sami M. El-Soudani 469			
	0.000	Mechanical properties of PM titanium alloys	469	
	25.2	Selection of powder processes and materials	492	
26	A rea	alistic approach for qualification of PM applications		
		e aerospace industry	497	
	R.R. Boyer, J.C. Williams, X. Wu, L.P. Clark			
		Introduction	497	
		A brief history of Ti powder metallurgy	and a state of the	
		in the United States	498	
	26.3	Assessment of the current status of Ti PM		
		and its potential	505	
	26.4	Qualification requirements	506	

xi

	26.5	Other development areas	510
	26.6		510
	26.7	Summary	512
27	Powe	ler metallurgy titanium aluminide alloys	515
		iu, Yong Liu	
	27.1	Introduction	515
	27.2	Preparation of PA TiAl powder	515
	27.3	1	519
	27.4	Hot deformation of PM TiAl-based alloys	521
	27.5	Properties of PM TiAl-based alloys	526
	27.6	Summary	528
28	Poro	us titanium structures and applications	533
		Tang, J. Wang, Ma Qian	
	28.1		533
		Porous titanium structures	535
		Properties of porous titanium	539
	28.4	1 I	544
	28.5	Concluding remarks	550
29	Micr	ostructural characterization of as-sintered	
		ium and titanium alloys	555
	Ming		
		Introduction	555
	29.2		555
	29.3	are accompanied to the contract of the contrac	556
	29.4		
		characterization of PM Ti and Ti alloys	566
	29.5	Concluding remarks	574
30	Futu	re prospects for titanium powder metallurgy	
	mark		579
		d Whittaker, Francis H. (Sam) Froes	
	30.1	Introduction	579
	30.2	Current markets for titanium	580
	30.3	New product opportunities in established	
		market sectors	582
	30.4	Health care	588
	30.5	Jewelry	591
	30.6	Other sectors	593
	30.7	Prospects for developing applications in new market	
		sectors – automotive and general engineering	594
	30.8	Concluding discussion	597