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Foreword

The present monograph by A.I. Akhiezer and S.V. Peletminsky, dedicated to an
exposition of methods of statistical mechanics, will undoubtedly occupy a special
place among monographs on statistical mecahnics, since it uniformly derives and
studies both kinetic equations for classical and quantized systems, and equations
of macroscopic physics, i.e., equations of hydrodynamics for normal and superfluid
liquids and equations of macroscopic electrodynamics.

The authors have achieved uniformity in their approach to such seemingly varied
problems by basing their exposition on the concept of compact description of non-
equilibrium states of macroscopic systems. This compact description emerges
naturally in the course of the evolution of physical systems having a large number
of degrees of freedom, and therefore it is also expedient and natural to employ
this description of non-equilibrium systems for deriving both kinetic equations
and equations of hydrodynamics. If a system is‘characterized by weak particle
interactions or by low particle densities, the hydrodynamic stage of the evolution
is preceded by a kinetic stage, which may be studied with the aid of kinetic
equations. If the particle interactions are not weak or the particle density is
high, there is no kinetic stage of evolution and the hydrodynamic stage which arises
immediately may be studied with the aid of the equations of hydrodynamics.

Closely adhering to this idea of a compact description, the authors construct a
theory on the basis of general principles, such as the principle of the relaxation
of correlations and ergodic relations, connected with the special features of the
structure of Hamiltonians and with the properties of their symmetry. ‘

The authors devote particular attention to the study of quantum systems. In
addition, they preface their discussion of problems of quantum statistics with a
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clear exposition of the fundamentals of quantum mechanics, including the theory
of measurement.

The authors also employ the method of a compact description in their investigation
of the asymptotic behaviour of such universal quantities as equilibrium two-time
Green functions.

Special attention is paid to examining systems with spontaneously broken symmetry,
and in particular to systems with broken gauge symmetry.

The monograph is distinguished by rigour, clarity and consistency of mathematical
cens tructs, both as a whole and with respect to specific problems.- We may note,
for example. the investigation of problems related to the entropy of weakly non-
ideal gases, to the quantum virial expansion in the theory of kinetic equations,
and so on.

However, the reader will find here not only a presentation of the formal basis of
statistical mechanics. The monograph also examines a series of concrete applications
that provide good illustrations of the general theory. These include the kinetic
theory of gases, the theory of Brownian motion, the theory of the slowing down of
neutrons, the theory of transport phenomena in crystals, and some problems of
statistical plasma thecry.

The book is characterized, if one may say so, by a balance between physics and
mathematics, which greatly facilitates its reading and comprehension.

This interesting and valuable book will undoubtedly benefit a wide circle of
readers, including both physicists and mathematicians, who deal with problems of
statistical mechanics.

Academician N.N. Bogoliubov



Preface

The properties of macroscopic bodies are to a large degree determined by their
atomic-molecular structure. With the number of atoms and molecules making up
macroscopic bodies being enormously large, laws arise of a special type - statistical
laws which, together with the microscopic laws of the motion of atoms and molecules,
determine the macroscopic properties of physical bodies.

The physical nature.of the different processes occurring in macroscopic bodies can
vary greatly. Thus different types of physical phenomena demand the development

of different theories. However, despite the variety of theories, there is a
general research method combining them all. This is the statistical mechanics
method, based on the examination of macroscopic bodies defined as systems made up
of an enormous number of particles. Since precise values for the coordinates and
momenta of individual particles are of no relevance to macroscopic descriptions

(to say nothing of the fact that in practice we do not know these values), the need
arises for some sort of averaging, for which the concept of the probability of a
state must be introduced.

In introducing the concept of probability we must emphasize that the use of
probability is not an essential part of classical physics. We use it because it

is not possible, and indeed not desirable, to follow the motion of every atom
(although in principle, if the atom were subject to the laws of classical mechanics,
this would be possible). In real life atoms are subject to the laws of quantum
mechanics, not classical mechanics, and so the concept of probability is inherent

in the nature of things. Thhs the basic statistical nature of the behaviour of
micro-objects does not contradict the determinism of the behaviour of macro-objects,
since as we have already said, macroscopic examination assumes the averaging of the

vii

1
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dynamic variables of individual atoms. For a very large number of these variables
the averaging that derives from the general theorems of the theory of probability
leads to a very great reduction in the variations of macroscopic observations.

One matter of great relevance is the fact that in the process of the evolution
which every physical system undergoes with time the character of the probabilistic
description changes; or to put it more precisely, at each stage cf the evolution
of a physical system the form of the probability of a state has a different
structure, the structure becoming simplified with time. This indicates that the
probability for the state of a system over a long period of time is defined in
p;actice by a limited number of functions, i.e. the probability is a functional

of those functions which can be used for the macroscopic description of physical
systems. These functions satisfy particular equations - at different stages of
the evolution of a physical system, the kinetic equations for the particle distri-
bution function, the equations of hydrodynamics and other transport equations.

This book describes the general methods of statistical mechanics, based on the
idea of a contracted description of systems with a large number of degrees of
freedom. A range of applications of these methods is also described.

We begin with a study of kinetic equations in classical systems (Chapter One).
We introduce many-particle distribution functions, which at the kinetic stage of
the evoiution are functionals of the single-particle distribution function, For
these functionals we construct a chain of coupled integral equations equivalent
to the chain of integral equations of Bogolvubov, Bern, Green, Kirkwood and Yvon
and the 'boundary condition' cf Bogolyubov, which is in turn connected with the
principle of the weakening of correlations in macroscopic systems. In this
chapter we also set out the theory of transport phenomena based on Beltzmann's
kinetic equation and derive the Fokker-Planck equation for slow processes. These
are applied to an examination of the theory of Brownian motion and the slowing-
down theory of neutrons. Chapter One also contains an examination of the basic
questions of the statistical mechanics of charged particles. The chapter con-
cludes with a consideration of aspects of the reversibility of mechanical motion
and the irreversibility of macroscopic processes.

In Chapter Two we set out the basic principles of the statistical mechanics of
quantum systems. Here, along with the general principles of quantum mechanics,
ergodic relations of macroscopic quantum systems and the principle of the weakening
of correlations are examined. Chapter Three is devoted to the theory of equilibrium
states of quantum systems. Questions of the thermodynamic perturbation theory and
the quantum virial expansion are examined. Using the quasi-average method we
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develop a theory of the superfluidity of boson and fermion gases.

Chapter Four is devoted to methods of investigating non-equilibrium states of
quantum systems. The reaction of a system to external disturbances is introduced,
the properties of Green functions are investigated, and a general theory of
relaxtion processes based on the concept of a contracted description of macroscopic
systems is developed. We examine in detail the low-frequency asymptotics of Green
functions.

In Chapter Five we examine kinetic equations for quantum systems. We derive kinetic
equations for cases of weak interaction and of low density. We study the question
of the entropy of a weakly non-ideal non-equilibrium quantum gas. We derive kinetic
equations for particles in a variable external field and establish the 1link between
these equations and the low-frequency asymptotics of Green functions for both

normal and degenerate systems. We also obtain kinetic equaticns for particles and
radiation interacting with a medium. We apply these to such matters as zero-sound
theory and the theory of the thermal conductivity of dielectrics.

In Chapter Six we examine the hydrodynamic stage of the evolution and derive
'equations for the hydrodynamics of both normal and superfluid 1iqujds. In this
chapter we obtain equations for macroscopic electrodynamics and establish the
properties of electrodynamic Green functions.

As we have already indicated, our approach is based on the idea of a contracted
description of systems with a large number of particles. Therefore we have not
considered matters lying outside this area. For example, the theory of equations
for the diagonal elements of a statistical operator, developed by Prigogine and
Van Hove, is not examined. We have not covercd the diagram technique, since its
basic results can be obtained by the contracted description method. In this
regard our bibliography cannot be considered exhaustive, and we beg in advance the
pardon of those authors whose work on the methods of statistical physics has not
found expression in our bibliography.

We wish to express our gratitude to V.P. Prikhodko, A.I. Sokolovsky and V.K.
Fedyanin for their valuable comments and assistance in the preparation of the
manuscript for publication.

A.I. Akhiezer
S.V. Peletminsky
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CHAPTER 1
Kinetic Equations for Classical Systems

1.1. MANY-PARTICLE DISTRIBUTION FUNCTIONS
1.1.1. Boltzmann's Kinetic Equation

In contrast to statistical thermodynamics, which is concerned with the study of
equilibrium states of macroscopic systems consisting of a large number of particles,
physical kinetics is concerned with the study of the various physical processes
taking place in such systems.

Upon the passage of a sufficient amount of time (called the relaxation time), every
macroscopic system, if left to itself, undergoes a transition into a state of
statistical equilibrium. For this reason, physical kinetics must take statistical
thermodynamics into account as a limiting case. However, from general considerations
it is clear that the ultimate equilibrium state must be described much more simply
than those processes as a result of which this state is achieved. And in fact, all
thermodynamic properties of any macroscopic body can be studied with the aid of the
universal Gibbs ensemble [42]

u(xl.....xN) = exp{B(F - H(xl....,xN))}, (1.1.1)

which links the equilibrium probability density w(xl....,xN) that separate particles
of a system have given coordinates and momenta X = (ii,ﬁi), with the Hamiltonian
of the system H(xl,...,xN) and with such macroscopic quantities as temperature

T= e'l and free energy F.

This distribution, established by Gibbs in 1901, is true for any macroscopic system;
of the microscopic quantities pertaining to the system, it contains only the
Hamiltonian of the system, and of the macroscopic quantities it includes parameters
which characterize the equilibrium state, i.e. the temperature, volume and number

MST - B ]



2 Kinetic Equations for Classical Systems

of particles (the free energy is a function of temperature T, volume V and number
of particles N).

The universality of the Gibbs ensemble, which in priﬁcip]e encompasses all stat-
jstical thermodynamics, is related to the fact that it describes equilibrium states.
In the transition from equilibrium states to non-equilibrium states this univer-
sality is lost, and for the time dependence of various processes at various stages
of the system's evolution, physical kinetics obtains various relationships which
cannot be united in a single universal formula of the Gibbs type, which includes
only temperature and volume.

Statistical thermodynamics and physical kinetics are based on the kinetic theory

of yases developed by Maxwell and Boltzmann in the second half of the 19th century.
And it is precisely on the basis of a gas, which is the simplest physical system,
that the relationship between statistical thermodynamics and physical kinetics -

the two component parts of statistical physics - can be most easily understood.

If in the first approximation the interaction between gas particles is not taken
into account, its Hamiltonian will have the form '

52
2 ->
H(X:seunsXy) = (= + U(x,)),
( 1 N IsgsN 2m : l))

where EQ and 12 are the momentum and radius-vector of the %-th particle, U(Il) is
its potential energy in a given external field, m is the particle mass and N is
the number of particles (the particles are assumed to be identical). This form of
the Hamiltonian leads to a decomposition of probability density w(xl. “eaXy ) into
a product of single-particle distribution functions fo(xg,pl)

WX senasXy) = T f(x WP,) s
1 XN 1<2<N &%

£6B) = Cexp -8B — au(®), (1.1.2)

where C is a normalization constant.

The function f (x p) is caHed the NMaxwell-soltzmann distribution. It determines
(after mu1t1p11catlon by d X d p) the number of particles whose coordinates and
momenta lie within the ranges d3x and d3p close to the given values of X and p
after the passage of a long (compared to the relaxation time rr) time, after which
the gas has acquired a state of statistical equilibrium.

But the question may arise, how does a single-particle distribution function be-
have at times t that are shorter than the relaxation time Tps and how does the
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ultimate transition to the Maxwell-Boltzmann distribution occur? This question is
one of the simplest, and at the same time one of the most fundamental questions of
physical kinetics. It was solved by Boltzmann, who established an equation which

is satisfied by the non-cquilibrium single-particle distribution function f(f.ﬁ,t)
in the case of a gas with a low density [33]. This equation, called the Boltzmann
kinetic equation, h§§ the following form:

U R ﬁ)-( LLOJ (1.1.3)
where V = E/m is particle velocity, F = -du/dx is the external force acting on
the particle, and (df/dt) is the so-called co111s1on integral. The distribution
function determines (after multiplying by d3x d p) the number of particles whose
coordinates and momenta lie at time t within the volume element d3x d33, and
satisfies the normalization condition

f dx dpf(X.p.t) =

The terms (v df/dX)and (F.df/dp)in the kinetic equation define the change in the
distribution function caused by the arrival and departure of particle in the
element d3; d35 of the coordinate and momentum space as a result of the motion of
particles under the action of an external force; the quantity (df/dt). defines the
change in the distribution function caused by the interaction of gas particles
with each other.

If the density of the gas is low, only binary collisions are significant, and the
collision integral has the form

(%)c = J d3p1 J da|v - ¥, lo(e, V - VI)(f'fi - ). (1.1.4)
Here p and p1 are the momenta of any two particles prior to the collision, p and
p1 are the momenta of these particles after the co]1151on, Tinked to p and p1 by
the laws of conservation of momentum and energy; do = o(8, V-V )dﬂ is the
differential cross-section of scattering in solid angle dQ (6 1s the angle between
the vectors, 31 - B and Bj - B') and f = f(X,B,1), iy f(I,Bl,t), f' = f(X,p'Ht),
etc. The values of the momente of the particles after the collision are clearly
unambiguously defined by the quantities E. El’ 6.

We see that the collision integral includes the scattering cross-section, i.e., a
quantity having a probabilistic character. This type of quantity does not occur
in any dynamic equations of mechanics. Thus it may be said that the formulation
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of a kinetic equation necessitates introducing a concept which is essentially new
in mechanics - the concept of probability. On the other hand, the irreversibility
of kinetic processes also has a probabilistic character. Therefore it is natural
that kinetic equations are that mathematical apparatus which makes possible the
study of irreversible processes in a gas and to determine the kinetic coefficients
of a gas, i.e., the coefficients of thermal conductivity, viscosity and diffusion.

The irreversibility of kinetic processes corresponds to the increase in the system's
entropy, and the kinetic equation makes it possible to prove the law of entropy
increase of a gas (the Boltzmann H-theorem). The entropy density of the gas s(X,t)
is here determined, according to Boltzmann, combinatorially:

s(%,t) = - J a% FEB.t) tn FRLB.L). (1.1.5)

Frow this definition and from the kinetic equation (1.1.3) it follows that

35 4 di

at ff

v s
==L 0a3 [ a3 [ av - Vo8,V - V)(F'F! - FF.) &N e
4 1 P 1194 1 1 1 A
30 = - [ B IR o AR,

from which (3/5t) d3; s(X,t) = 0. The equality sign corresponds to the state of
statistic equilibrium, when the distribution function is determined by formula
(1.1.2).

Since a kinetic equation contains only the first time derivative of the distribution
function, the Cauchy problem may be posed for it, i.e., the problem of finding the
particle distribution function f(X,p,t) at t # 0 for a given initial distribution
f(Y,E,O). This problem has a single solution [62] but due to the specific structure
of the collisjon integral, the function f(X,p,t) will be positive only at t > 0,
j.e., at subsequent moments of time in relation to the initial moment. With

respect to moments of time preceding the initial moment, for them the solution of
the kinetic equation may not be positive. Therefore, the solution of the kinetic
equation for t < 0 does, generally speaking, not have a physical meaning. Thus,

in the Boltzmann kinetic equation both directions of time are not equivalent.

This circumstance accords with the fact that the kinetic equation is suitable for

describing irreversible processes.

The method which was used by Boltzmann himself when deriving the kinetic equation
had in some sense a semi-intuitive character; specifically, in the derivation it
was taken for granted that a state a gas can always be described with the aid of
only a single-particle distribution function, i.e., it was silently assumed that
the effects related to particle correlations are always negligibly small. It is



