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PREFACE

Major Features

Many introductory differential equations courses in the recent past have empha-
sized the formal solution of standard types of differential equations using a
(seeming) grab-bag of systematic solution techniques. Many students have concen-
trated on learning to match memorized methods with memorized equations. The
evolution of the present text is based on experience teaching a course with a greater
emphasis on conceptual ideas and the use of applications and computing projects to
involve students in more intense and sustained problem-solving experiences.

The availability of technical computing environments like Maple, Mathemat-
ica, and MATLAB is reshaping the role and applications of differential equations in
science and engineering and has shaped our approach in this text. New technology
motivates a shift in emphasis from traditional manual methods to both qualitative
and computer-based methods that

« render accessible a wider range of more realistic applications;

o permit the use of both numerical computation and graphical visualization to
develop greater conceptual understanding; and

 encourage empirical investigations that involve deeper thought and analysis
than standard textbook problems.

The following features of this text are intended to support a contemporary differen-
tial equations course that augments traditional core skills with conceptual perspec-
tives that students will need for the effective use of differential equations in their
subsequent work and study:

o Coverage of seldom-used topics has been trimmed and new topics added to
place a greater emphasis on core techniques as' well as qualitative aspects
of the subject associated with direction fields, solution curves, phase plane
portraits, and dynamical systems. We combine symbolic, graphic, and nu-
meric solution methods wherever it seems advantageous. A fresh computa-
tional flavor should be evident in figures, examples, problems, and applica-
tions throughout the text. About 15% of the examples in the text are new or
newly revised for this edition.

e The organization of the book places an increased emphasis on linear systems
of differential equations, which are covered in Chapters 4 and 5 (together with
the necessary linear algebra), followed by a substantial treatment in Chapter 6
of nonlinear systems and phenomena (including chaos in dynamical systems).

o This book begins and ends with discussions and examples of the mathemati-
cal modeling of real-world phenomena. Students learn through mathematical

ix



X Preface

Computing Features

modeling and empirical investigation to balance the questions of what equa-
tion to formulate, how to solve it, and whether a solution will yield useful
information.

The first course in differential equations should also be a window on the world
of mathematics. While it is neither feasible nor desirable to include proofs of
the fundamental existence and uniqueness theorems along the way in an ele-
mentary course, students need to see precise and clear-cut statements of these
theorems and to understand their role in the subject. We include appropriate
existence and uniqueness proofs in the Appendix and occasionally refer to
them in the main body of the text.

While our approach reflects the widespread use of new computer methods for
the solution of differential equations, certain elementary analytical methods of
solution (as in Chapters 1 and 3) are important for students to learn. Effective
and reliable use of numerical methods often requires preliminary analysis us-
ing standard elementary techniques; the construction of a realistic numerical
model often is based on the study of a simpler analytical model. We therefore
continue to stress the mastery of traditional solution techniques (especially
through the inclusion of extensive problem sets).

The following features highlight the flavor of computing technology that distin-
guishes much of our exposition.

o Almost 700 computer-generated figures—over half of them new for this edi-

tion and most constructed using Mathematica or MATLAB—show students
vivid pictures of direction fields, solution curves, and phase plane portraits
that bring symbolic solutions of differential equations to life. For instance, the
cover graphic shows an eigenfunction of the three-dimensional wave equation
that illustrates surface waves on a spherical planet and was constructed using
associated Legendre functions (see Section 10.5).

About 45 application modules follow key sections throughout the text. Most
of these applications outline “technology neutral” investigations illustrating
the use of technical computing systems and seek to actively engage students
in the application of new technology.

A fresh numerical emphasis that is afforded by the early introduction of nu-
merical solution techniques in Chapter 2 (on mathematical models and nu-
merical methods). Here and in Chapter 4, where numerical techniques for
systems are treated, a concrete and tangible flavor is achieved by the inclu-
sion of numerical algorithms presented in parallel fashion for systems ranging
from graphing calculators to MATLAB.

A conceptual perspective shaped by the availability of computational aids,
which permits a leaner and more streamlined coverage of certain traditional
manual topics (like exact equations and variation of parameters) in Chapters
1,3,and 5.
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Preface xi

Mathematical modeling is a goal and constant motivation for the study of differen-
tial equations. To sample the range of applications in this text, take a look at the
following questions:

What explains the commonly observed time lag between indoor and outdoor
daily temperature oscillations? (Section 1.5)

What makes the difference between doomsday and extinction in alligator pop-
ulations? (Section 2.1)

How do a unicycle and a two-axle car react differently to road bumps? (Sec-
tions 3.7 and 5.3)

How can you predict the time of next perihelion passage of a newly observed
comet? (Section 4.3)

Why might an earthquake demolish one building and leave standing the one
next door? (Section 5.3)

What determines whether two species will live harmoniously together, or
whether competition will result in the extinction of one of them and the sur-
vival of the other? (Section 6.3)

Why and when does nonlinearity lead to chaos in biological and mechanical
systems? (Section 6.5)
If a mass on a spring is periodically struck with a hammer, how does the

behavior of the mass depend on the frequency of the hammer blows? (Section
7.6)

Why are flagpoles hollow instead of solid? (Section 8.6)

What explains the difference in the sounds of a guitar, a xylophone, and drum?
(Sections 9.6, 10.2, and 10.4)

Organization and Content

We have reshaped the usual approach and sequence of topics to accommodate new
technology and new perspectives. For instance,

After a precis of first-order equations in Chapter | (though with the coverage
of certain traditional symbolic methods streamlined a bit), Chapter 2 offers an
early introduction to mathematical modeling, stability and qualitative proper-
ties of differential equations, and numerical methods—a combination of topics
that frequently are dispersed later in an introductory course.

Chapters 4 and 5 provide a flexible treatment of linear systems. Motivated
by current trends in science and engineering education and practice, Chap-
ter 4 offers an early, intuitive introduction to first-order systems, models, and
numerical approximation techniques. Chapter 5 begins with a self-contained
treatment of the linear algebra that is needed and then presents the eigenvalue
approach to linear systems. It includes a wide range of applications (ranging
from railway cars to earthquakes) of all the various cases of the eigenvalue
method. Section 5.5 includes a fairly extensive treatment of matrix exponen-
tials, which are exploited in Section 5.6 on nonhomogeneous linear systems.

 Chapter 6 on nonlinear systems and phenomena ranges from phase plane anal-
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ysis to ecological and mechanical systems to a concluding section on chaos
and bifurcation in dynamical systems. Section 6.5 presents an elementary in-
troduction to such contemporary topics as period doubling in biological and
mechanical systems, the pitchfork diagram, and the Lorenz strange attractor
(all illustrated with vivid computer graphics).

o Laplace transform methods (Chapter 7) and power series methods (Chapter 8)
follow the material on linear and nonlinear systems but can be covered at any
earlier point (after Chapter 3) the instructor desires.

e Chapters 9 and 10 treat the applications of Fourier series, separation of vari-
ables, and Sturm-Liouville theory to partial differential equations and bound-
ary value problems. After the introduction of Fourier series, the three clas-
sical equations—the wave and heat equations and Laplace’s equation—are
discussed in the last three sections of Chapter 9. The Sturm-Liouville meth-
ods of Chapter 10 are developed sufficiently to include some rather significant
and realistic applications.

This book includes enough material appropriately arranged for different
courses varying in length from one quarter to two semesters. The briefer version,
Differential Equations: Computing and Modeling, ends with Chapter 7 on Laplace
transform methods (and thus omits the material on power series methods, Fourier
series, separation of variables and partial differential equations).

Problems, Applications, and Solutions Manuals

Almost 20% of the text’s over 1900 problems are new for this edition or are newly
revised to include graphic or qualitative content. Accordingly, the answer section
now includes almost 300 new computer-generated figures illustrating those which
students are expected to construct.

The answer saction for this revision has been expanded considerably to in-
crease its value as a learning aid. It now includes the answers to most odd-numbered
problems plus a good many even-numbered ones. The 625-page Instructor’s Solu-
tions Manual (0-13-047578-5) accompanying this book provides worked-out so-
lutions for most of the problems in the book, and the 375-page Student Solutions
Manual (0-13-047579-3) contains solutions for most of the odd-numbered prob-
lems.

The approximately 45 application modules in the text contain additional prob-
lem and project material designed largely to engage students in the exploration and
application of computational technology. These investigations are expanded consid-
erably in the 325-page Applications Manual (0-13-047577-7) that accompanies the
text and supplements it with additional and sometimes more challenging investiga-
tions. Each section in this manual has parallel subsections “Using Maple,” “Using
Mathematica,” and “Using MATLAB” that detail the applicable methods and tech-
niques of each system and will afford student users an opportunity to compare the
merits and styles of different computational systems.

Technology Manuals and Website

The author-written solutions and applications manuals described previously, as well
as the additional technology manuals listed next, are available shrink-wrapped free
with the textbook upon order using the:indicated ISBN numbers:
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CHAPTEHR
First-Order

Ditferential Equations

1.1 Differential Equations and Mathematical Models

The laws of the universe are written in the language of mathematics. Algebra
is sufficient to solve many static problems, but the most interesting natural
phenomena involve change and are described by equations that relate changing
quantities.

Because the derivative dx/dt = f’(t) of the function f is the rate at which
the quantity x = £(¢) is changing with respect to the independent variable ¢, it
is natural that equations involving derivatives are frequently used to describe the
changing universe. An equation relating an unknown function and one or more of
its derivatives is called a differential equation.

We differential equation

3_4: =x247
involves both the unknown function x(r) and its first derivative x'(t) = dx /dt. The
differential equation ,
:iix% + 3% +7y=0
involves the unknown function y of the independent variable x and the first two
derivatives y’ and y” of y. n

The study of differential equations has three principal goals:

1. To discover the differential equation that describes a specified physical
situation.

2. To find—either exactly or approximately—the appropriate solution of that
equation.

3. To interpret the solution that is found.




2 Chapter 1 First-Order Differential Equations

ExdmbIeZ :

In algebra, we typically seek the unknown numbers that satisfy an equation
such as x3 +7x2 — 11x +41 = 0. By contrast, in solving a differential equation, we
are challenged to find the unknown functions y = y(x) for which an identity such
as y'(x) = 2xy(x)—that is, the differential equation

dy
b= 7x
dx ’

—holds on some interval of real numbers. Ordinarily, we will want to find all
solutions of the differential equation, if possible.
If C is a constant and 2
y(x) = Ce*, )
then d
y _ x2 " 2 _
E_C(?.xe )_(Zx)(Ce’)_ny.

Thus every function y(x) of the form in Eq. (1) satisfies—and thus is a solution
of—the differential equation

dy

=L _ 9y

dx

for all x. In particular, Eq. (1) defines an infinite family of different solutions of
this differential equation, one for each choice of the arbitrary constant C. By the
method of separation of variables (Section 1.4) it can be shown that every solution
of the differential equation in (2) is of the form in Eq. (1). [ |

2

Differential Equations and Mathematical Models

The following three examples illustrate the process of translating scientific laws and
principles into differential equations. In each of these examples the independent
variable is time ¢, but we will see numerous examples in which some quantity other
than time is the independent variable.

Example 3

FIGURE 1.1.1. Newton’s law
of cooling, Eq. (3), describes the
cooling of a hot rock in water.

Newton’s law of cooling may be stated in this way: The time rate of change (the
rate of change with respect to time ¢) of the temperature 7 (¢) of a body is propor-
tional to the difference between T and the temperature A of the surrounding medium
(Fig. 1.1.1). That is, 7

o k(T — A), 3)
where k is a positive constant. Observe that if T > A, then dT/dt < 0, so the
temperature is a decreasing function of ¢ and the body is cooling. Butif T < A,
then dT /dt > 0, so that T is increasing.

Thus the physical law is translated into a differential equation. If we are given
the values of k and A, we should be able to find an explicit formula for 7'(z), and
then—with the aid of this formula—we can predict the future temperature of the
body. |

Example 4 Tomcelll’s law 1mphes that the ume rate of change of the volume V of water in a

draining tank (Fig. 1.1.2) is proportional to the square root of the depth y of water
in the tank: 5

v —kJy, @
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where k is a constant. If the tank is a cylinder with vertical sides and cross-sectional

area A, then V = Ay, sodV/dt = A - (dy/dt). In this case Eq. (4) takes the form
dy

= = —h./y, (&)

dt vy

where h = k/A is a constant. |

Example 5

FIGURE 1.1.2. Torricelli’s law
of draining, Eq. (4), describes
the draining of a water tank.

The time rate of change of a population P (r) with constant birth and death rates is,
in many simple cases, proportional to the size of the population. That is,

% =kP, (6)
where k is the constant of proportionality. |
Let us discuss Example 5 further. Note first that each function of the form
P(t) = Cet ™
is a solution of the differential equation
dP
s kP

in (6). We verify this assertion as follows:
P'(t) = Cke* = k(Ce"') = kP(t)

for all real numbers 7. Because substitution of each function of the form given in
(7) into Eq. (6) produces an identity, all such functions are solutions of Eq. (6).

Thus, even if the value of the constant k is known, the differential equation
dP/dt = kP has infinitely many different solutions of the form P(r) = Ce*,
one for each choice of the “arbitrary” constant C. This is typical of differential
equations. It is also fortunate, because it may allow us to use additional information
to select from among all these solutions a particular one that fits the situation under
study.

Example 6

the population at time ¢ = 0 (hours, h) was 1000, and that the population doubled
after 1 h. This additional information about P(z) yields the following equations:

1000 = P(0) = Ce® = C,

2000 = P(1) = Cé.
It follows that C = 1000 and that e* = 2, s0 k = In2 = 0.693147. With this value
of k the differential equation in (6) is

dP
b i (In2)P =~ (0.693147) P.
Substitution of k = In2 and C = 1000 in Eq. (7) yields the particular solution
P() = 1000e™?" = 1000("?)' = 1000-2'  (because "? = 2)

that satisfies the given conditions. We can use this particular solution to predict
future populations of the bacteria colony. For instance, the predicted number of
bacteria in the population after one and a half hours (when ¢ = 1.5) is

P(1.5) = 1000 - 2%/% ~ 2828. ]



4 Chapter 1 First-Order Differential Equations

FIGURE 1.1.3. Graphs of
P(t) = Ce! withk = In2.

The condition P(0) = 1000 in Example 6 is called an initial condition be-
cause we frequently write differential equations for which ¢+ = 0 is the “slanipg
time.” Figure 1.1.3 shows several different graphs of the form P(t) = Ce*' with
k = In2. The graphs of all the infinitely many solutions of d P/dt = k P in fact fill
the entire two-dimensional plane, and no two intersect. Moreaver, the selection of
any one point Py on the P-axis amounts to a determination of P(0). Because ex-
actly one solution passes through each such point, we see in this case that an initial
condition P(0) = P, determines a unique solution agreeing with the given data.

Mathematical Models

Our brief discussion of population growth in Examples 5 and 6 illustrates the crucial
process of mathematical modeling (Fig. 1.1.4), which involves the following:

1. The formulation of a real-world problem in mathematical terms; that is, the
construction of a mathematical model.

2. The analysis or solution of the resulting mathematical problem.

3. The interpretation of the mathematical results in the context of the original
real-world situation; for example, answering the question originally posed.

Real-world
situation
Formuiation
Mathematical Mathematical Mathematical
model analysis results

FIGURE 1.1.4. The process of mathematical modeling.

In the population example, the real-world problem is that of determining the
population at some future time. A mathematical model consists of a list of vari-
ables (P and 1) that describe the given situation, together with one or more equations
relating these variables (d P/dt = kP, P(0) = P,) that are known or are assumed
to hold. The mathematical analysis consists of solving these equations (here, for P
as a function of 1). Finally, we apply these mathematical results to attempt to answer
the original real-world question.

Nevertheless, it is quite possible that no one solution of the differential equa-
tion fits all the known information. In such a case we must suspect that the differen-
tial equation may not adequately describe the real world. For instance, the solutions
of Eq. (6) are of the form P(t) = Ce*, where C is a positive constant, but for no
choice of the constants k and C does P(r) accurately describe the actual growth of
the human population of the world over the past few centuries. We must therefore
write a perhaps more complicated differential equation, one that takes into account
the effects of population pressure on the birth rate, the declining food supply, and
other factors. This should not be regarded as a failure of the model in Example 5, but
as an insight into what additional factors must be considered in studying the growth
of populations. Indeed, Eq. (6) is quite accurate under certain circumstances—for

example, the growth of a bacterial population under conditions of unlimited food
and space.



