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Preface

As is known, the book named “Multivariate spline functions and their
applications” has been published by the Science Press in 1994.

This book is an English edition based on the original book mentioned
above with many changes, including that of the structure of a cubic C!-
interpolation in n-dimensional spline spaces, and more detail on triangu-
lations have been added in this book.

Special cases of multivariate spline functions (such as step functions,
polygonal functions, and piecewise polynomials) have been examined math-
ematically for a long time. 1. J. Schoenberg ( Contribution to the problem of
application of equidistant data by analytic functions, Quart. Appl. Math.,
4(1946),45 — 99;112 — 141) and W. Quade & L. Collatz (Zur Interpo-
lations theories der reellen periodischen function, Press. Akad. Wiss.
(PhysMath. KL), 30(1938), 383 — 429) systematically established the the-
ory of the spline functions. W. Quade & L. Collatz mainly discussed the
periodic functions, while I. J. Schoenberg’s work was systematic and com-
plete. I. J. Schoenberg outlined three viewpoints for studing univariate
splines: Fourier transformations, truncated polynomials and Taylor ex-
pansions. Based on the first two viewpoints, 1. J. Schoenberg deduced
the B-spline function and its basic properties, especially the basis func-
tions. Based on the latter viewpoint, he represented the spline functions
in terms of truncated polynomials. These viewpoints and methods had
significantly effected on the development of the spline functions.

In view of the variety and complexity in application, it is very im-
portant to study the multivariate spline function theoretically. Since the
multivariate spline function is heavily dependent on the geometric prop-
erty of the domain partitions, it is so complex that the multivariate spline
function, especially the non-Cartesian product multivariate spline func-
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tion, has not been developed radically for a long time. G. Birkhoff, H.
L. Garabedian, C. de Boor, M. H. Schultz and R. S. Varga discussed the
Cartesian product bicubic spline function and its applications in numerical
solutions of partial differential equations.

Analysing the relation between the polynomials over two adjacent cells,
we introduce the smooth cofactor and conformality condition to which
the polynomials must satisfy. The conformality condition establishes the
equivalent conversion between the multivariate spline function and the
corresponding algebraic problem. Moreover, the conformality condition
provides an algebraic approach to studying the multivariate spline func-
tion. Based on the conformality condition theory, we have systematically
studied the dimension of the multivariate spline functions, the basis func-
tions, especially the locally supported basis functions, the smooth surface
interpolations, the non-linear spline interpolations, the higher-dimensional
spline functions, and the multivariate spline functions in computer aided
geometric designs.

This book will systematically introduce the basic theories and meth-
ods on the multivariate spline functions. In order for the reader to know
the frontier research on the multivariate spline functions, we will also in-
troduce the modern developments of the multivariate spline functions and
their applications in sciences and engineering. More precisely, Chapter 1
introduces the basic definitions of the multivariate spline functions, facts,
and results; Chapter 2 mainly introduces the dimension of the multivariate
spline function space the theory on the basis functions, and their construc-
tions; Chapter 3 mainly introduces the notable Box spline, the simplex
spline, and the B-net method, etc.; Chapter 4 introduces the basic the-
ory, methods, and structures of the higher-dimensional spline functions;
Chapter 5 introduces the theory on non-linear spline interpolations and
their constructive methods; Chapter 6 introduces the basic problems and
results on the piecewise algebraic curves and the piecewise algebraic sur-
faces; Chapter 7 introduces applications of the multivariate spline func-
tions in the sciences and engineering, especially in finite element methods
and computer aided geometric designs.

The writing of this book was participated in by professors Xiquan
Shi, Zhongxuan Luo, Zhixun Su, and Dr. Shao-Ming Wang who is also
the translator of this book. I wish to express my great appreciation to
the Publishing Foundation of Academia Sinica, as will as The National
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Nature Science Foundation of China. Without their assistance, this book
is unable to be published.

Ren-Hong Wang

Institute of Applied Mathematics
Dalian University of Technology
Dalian, P.R.China

October, 2000
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Chapter 1

Introduction to Multivariate
Spline Functions

It is well known that spline functions play very important roles in both
theories and applications in the sciences and engineering. In view of the
variety and complexity of the objectives, it is important to study the
multivariate splines. Between the 1960’s and early the 1970’s, G. Birkhoff,
H. L. Garabedian and Carl de Boor studied and established a series of
theories on Cartesian tensor product multivariate splines. Although the
Cartesian tensor product multivariate spline has its own application value,
they are a simple extension of univariate spline functions, so they have
many limitations.

In 1975, the author established a new approach to studying the ba-
sic theory of multivariate spline functions using the methods of function-
theory and algebraic geometry, and presented the so-called of smooth co-
factor conformality method. Making use of this method, any problem
on multivariate spline functions can be studied by transferring it into an
equivalent algebraic problem.

Let D be a two dimensional domain in R%, Py be the collection of all
these bivariate polynomials with real coefficients and total degree < k:

k k~i

P.:={p= EZcijm"y]‘ | cij is a real value}.
i=0 j=0

A bivariate polynomial p € Py, is called an irreducible polynomial if
the polynomial can not be exactly divided by any other polynomial except
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a constant or itself (in the complex field). An algebraic curve
[:liz,y) =0, Uz,y) € Pn

is called an irreducible algebraic curve if [(z,y) is an irreducible polyno-
mial. Clearly, a straight line is an irreducible algebraic curve.

Using a finite number of irreducible algebraic curves to carry out the
partition A in a domain D, the domain D is divided into a finite number
of sub-domains D, Ds, --,Dpy by the partition A; each of such sub-
domains is called a ‘cell’. These line segments that form the boundary
of each cell are called the ‘mesh segments’ (edge); intersection points of
the mesh segments are called the ‘mesh points’ (vertex). The interior of a
mesh segment has no mesh point, that is, only the two ends of the mesh
segments are mesh points. All mesh points in a closed cell are called the
vertices of this cell. If two mesh points are two end points of a single mesh
segment, then these two mesh points are called adjacent mesh points.

Carrying out the partition A in the domain D, the union of all the
cells with a certain mesh point V' as a vertex is called an incidence domain
or a star shape domain of the mesh point V relative to the partition A,
denoted by St(V).

The space of multivariate spline functions is defined by

Si(A):={se C*(D)|® |p,€ Px,i=1,---,N}.

In fact, s € S (A) is a piecewise polynomial of degree k possesses u
order continuous partial derivatives in D.

1.1 Basic frame of multivariate spline
functions

In order to establish the basic frame of multivariate spline functions, we
need the following lemmas.

Lemma 1.1 M Let p(z,y) € Pi. If certain n zeros (xi,yi)(z"z l,---,n),n>
k + 1 of a linear polynomial

He,y)=az+by+c, a®+5624#0
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are also the zeros of p(x,y). Then p(z,y) is ezactly dividable by l(z,y),
that s, there is a polynomial ¢(z,y) € Pr—y such that

p(z,y) = Uz, y) - 9(z, ), (1.1)

Proof. Because a,b are not all zeroes, therefore we may assume that
b # 0. Arranging p(z,y) according to the order of descending power of y

p(z,y) = ao(x)y* + ar(z)y* 1+ + ak_1(2)y + ar(z)

where a;(z), j = 0,---,k is a polynomial of degree j of z. Divide by
{(z,y), we obtain

p(z,y) = l(z,9)  q(z,y) + r(2), (1.2)

where g(z,y) € Pk_1, the remainder r(z) is a polynomial of degree not
exceeding k. According to the assumption condition of the Lemma, we
have

r(z;) =0, i=1-,n; n2k+1 (1.3)

Since b # 0, z; # z; (i # j). Therefore (1.3) shows that r(z) has more
than k zeros, and r(z) = 0. The Lemma is proved. O

Lemma 1.2 V) Let p(z,y) € Py, and q(x,y) be an irreducible algebraic
polynomial. If p(x,y) and g(z,y) have more than km common zeros, then
p(z,y) is divisible by q(z,y). Namely, there is a r(x,y) € Pr_m such that
p(z,y) = q9(z,y) - r(z,y).

According to Bezout’s theorem in algebraic geometry, as long as p(z, y)
and gq(z,y) have more than km common zeroes, then they must have a
common factor. Since ¢(x,y) is irreducible, therefore g{x,y) must be a
factor of p(z,y).

Theorem 1.3 1 Let the representation of z = s(z,y) on the two arbi-
trary adjacent cells D; and D; be

z = pi(z,y) and z = p;(z,y)

where pi(z,y), pj(z,y) € Pk. In order to let s(x,y) € C*(D; U Dy), if and
only if there is a polynomial g;;(x,y) € Pi_(u41)a such that

pi(z, ) — pj(z,9) = [li(z, Y)I*T - @iz, ), (1.4)
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where D; and D; have common interior edge
Fij : ln(x,y) = 07 (15)
and the irreducible algebraic polynomial l;;(x,y) € Py.

Proof. Let u be a given positive integer, 0 < u < k-d~! —1. According
to the given condition, s(x,y) is continuous everywhere in I';;. Hence,
n(z,y) = pi(z,y) — p;j(x,y) is equal to zero everywhere in I';;. By Lemma
1.2, there is a polynomial ¢;(z,y) € Pk—_g4, such that

n(z,y) = pi(z,y) — pi(z,y) = Lii(z,y) - aulz,y). (1.6)

Also according to the property that the partial derivative of the first order
of n(z,y) being zero in I';;, we know that
Oq1
%lij(x7 y) +q (.’Z:, y) -

oq
a—ylij(l', y) + Q1(17, y) ' —IF:'J‘ =0

(1.7)

Since l;;(z,y) is irreducible, by two equations in (1.7), we know that
q1(x,y) is equal to zero everywhere in I';;. Again make use of Lemma 1.2,
there is a polynomial ¢go(z,y) € Pr_oq such that

q1(z,y) = Lj(z,y) - @2(z, v)- (1.8)

Then
n(z,y) = pi(z,y) — pj(=,y) = [li; (=, )] - a1z, v). (1.9)

Making use of the continuity of the partial derivative of the second
order, the third order and up to p order of s(z,y) € D; U D;, we obtain

n(z,y) = pi(z,y) — pi(x,y) = [l (=, »)*T - @iz, y), (1.10)

where q,-j(z-,y) S Pk—(p,+1)d- a

The polynomial factor g;;(x,y) defined by (1.4) in Theorem 1.3 is called
a smooth cofactor (cf.[1]) with interior mesh segment I';; : l;;(x,y) = 0
(from D; to D;). That means the existence of the smooth cofactor of
interior mesh segment I';; implies that the equality (1.4) is held.

By Theorem 1.3, we obtain the following corollary.



1.1 Basic frame of multivariate spline functions 5

Corollary 1.4 ! Let mesh segments of the partition A be irreducible
algebraic curves I'1,I'y,---,I'my. Their degrees are mi1,ng,- -, Nm respec-
tively. Then in order for a surface s € St (A) to exist (indeed piecewise),
k and p must satisfy the relation

k> (p+1) minn,. (1.11)

Theorem 1.3 indicates that the multivariate spline function s(z,y) €
S#(A) has a so-called the semi-analytic extension property, that is, the
difference between two adjacent cells is only a modified term similar to
the right hand side of (1.4). However, Theorem 1.3 could not completely
represent the inner properties of multivariate spline functions. In order to
provide the complete theoretic frame of multivariate spline functions, we
need to do further research.

Let I';; : +l;j(x,y) = 0 be the common interior mesh segment between
two adjacent cells D; and D;. Although the equation of I';; can be both
lij(z,y) = 0 and —l;;(z,y) = 0O, for the convenience and simplicity, we use
only one form in the whole procession of discussion. We also assume that

Ty =Tjis  l(z,y) = Li(z,y). (1.12)

By (1.4), the smooth cofactor ¢;;(z,y) in I';;, and the smooth cofactor
g;ji{z,y) in ['j; satisfy the relationship

gj(z,y) = —qg;i(z,y). (1.13)

Let A be a given interior mesh point. We adjust all the interior mesh
line I';; related to ¢ and j which passing through A as follows: centered
at A, crossing the mesh segment I';; counter-clockwise, the moving point
(x,y) just crosses from D; to D;.

Let A be an interior mesh point and define the Conformality Condition
at A by

Z[lij(xvy)]‘”-l ) (Iij(x,y) =0, (1'14)
A
where % presents the summation of all the interior mesh segments around

A, and ¢;j(z,y) is the smooth cofactor on I'y;.
Let Ay,---, Ay be all the interior mesh points in A. The Global Con-
formality Condition is

Z[lij(‘r’y)]“-’-l ' Qij(x7 y) =0, v=1,---, M, (115)
Ay
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where ¢;;(z,y) satisfies (1.14) the conformality condition corresponding to
Ay

The following theorem set up the basic frame of multivariate spline
theory.

Theorem 1.5 ! Let A be any partition of D. The multivariate spline
function s(z,y) € SK(A) exists, if and only if for every interior mesh
segment, there exists a smooth cofactor of the s(z,y), and satisfies the
global conformality condition (1.15).

In fact, the existence of the smooth cofactor on every interior mesh
segment is equivalent to the C* smooth continuity of the piecewise poly-
nomial. The property of conformality condition being satisfied at every
interior mesh line, that is, the satisfaction of global conformality condi-
tion, is also equivalent to the single-valued property on the whole domain
of the piecewise polynomial. Therefore Theorem 1.5 is true. The reader
may write out some details (cf.[1}).

If spline function s(z,y) € S, (A) is a polynomial of degree k every-
where in a related domain S#(V) at some mesh point V, then we call
s(z,y) is degenerate over St(V). If s(z,y) is a polynomial of degree k
over all the cells, then we say it is global degenerate. According to Theo-
rem 1.5, s(z,y) is degenerate over St(V') means that there is only a zero
solution of the corresponding conformality condition (1.14) at mesh point
V. The global degeneracy means that there is only a zero solution of the
global conformality condition (1.15).

In view of the purpose of multivariate spline function being to study
some theories and practical problems, we are interested in how to select
the partition A, the degree k and the smoothness u such that there ex-
ists a non-degenerate multivariate spline function. Theorem 1.5 shows
that there is a radical difference between multivariate spline function and
univariate spline function. The relations of the domain D, the partition
A, the degree k of piecewise polynomial and the smoothness p, that is
the effect of global conformality condition (1.15), eventually determines
a multivariate spline function. In fact, Theorem 1.5 points out that the
multivariate spline function is equivalent to the linear algebraic problem
of (1.15): the problem of homogeneous system of linear equations on the
coefficients of the smooth cofactors. The existence of solution and its
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properties of this kind of homogeneous system of linear equations become
the key issue to study the multivariate spline functions.

Suppose that the boundary 8D of domain D is composed of some
irreducible algebraic curves. If these irreducible algebraic curves are a
part of the interior mesh segments on the whole plane R?, and yield a
partition A of R? with the original partition A of D, then it is called a
global partition, while R?\D is also a cell of A.

As a direct corollary of Theorem 1.5, we have (cf.[1])

Corollary 1.6 For a global partition A, there is a s(z,y) € SE(A), if and
only if for every interior mesh segment, there exists a smooth cofactor of
the s(z,vy), and satisfies the global conformality condition (1.15) at every
mesh point.

Obviously, conformality condition ensures the single-valued property
of s(z,y) over A and A. If domain is not simply connected, for instance,
D is a multi-connected domain with A number of holes, then Theorem 1.5
and Corollary 1.6 are still true with an additional Hole Conformality
Condition

S s, Pt gy(z,y) =0, r=1,---,h (1.16)
H,

where Y presents the summation of all the interior mesh segments across
H,

the rth hole. The other notation in (1.16) is the same as (1.14) and (1.15).
In R?, every straight line ' : l[(z,y) = ax + by +c =0 is obviously an

irreducible algebraic curve. Therefore, for the partition in which all the

mesh lines are straight, the above results are still true. For instance,

Theorem 1.7 1 Let the representation of z = s(z,y) on the two adjacent
cells D; and D; be z = p;(z,y) and z = p;(x,y) respectively. In order to let
s(z,y) € C*(D; U D;), if and only if there exists a polynomial ¢;;(z,y) €
Pk—(p,+1)d such that

pi(il?, y) = pj(iB, y) = [lij(m, y)]H"'l ) qij(:l:a y)a (1'17)

where I'y; : Li;(x,y) = ai;x + bijy + cij = 0 is the common interior edge of
D; and D;.
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Theorem 1.8 Y Let A be a straight line partition of D. The multivariate
spline function s(x,y) € S,(A) ezists, if and only if for every interior
mesh segment, there erists a smooth cofactor of the s(x,y), and satisfies
the global conformality condition

D Lz, I gz, y) =0, (1.18)
Ay
where A, goes through all the interior mesh points, li(x,y) = aixz + by +
¢; = 0 is an interior mesh segment around Ay, and ¢;(z,y) € Pr_,_; is
the smooth cofactor on l;(z,y).

Propositions in paper [1] show that if there is any constraint condition
on the boundary 8D of D and we expect bivariate spline function s(z,y) €
C! over arbitrary triangulation, the degree of the piecewise polynomial
should not be less than five unless we select a special triangulation.

If we set up a partition A of D as follows: all the mesh segments
are straight lines cross-cut domain D. This kind of partition is called a
Cross-cut partition. In view of the speciality of cross-cut partition, we
have:

Theorem 1.9 1 If partition A is a cross-cut partition, then there is
always a non-degenerate multivariate spline function s(z,y) € Sy (4A), k >
n+1.

Let T'; : a;z + by + ¢; = 0 be an arbitrary mesh segment of partition
A. We define

I'7 ={(z,y) € D|a;x+ by +c: <0},

1":’ = {(z,y) € D | ajz + bjy + ¢; > 0}.

For any mesh segment [';; derived from I'; which I[';; C [;, if we let non-
zero polynomial ¢;(x,y) € Px_,_1 be the smooth cofactor of I'; from I';
to F;*', then it is easy to see that the corresponding global conformality
condition must be satisfied. Therefore, Theorem 1.9 is true. Especially,
we have ‘

Corollary 1.10 Ul If partition A is a rectangular partition, then there is
always a non-degenerate multivariate spline function s(z,y) € SL(A), k >
pw+1.



