N
= SN

=S

<&

SR el =
RS

O’REILLY"
% B kT dRt

4

AN

Bruce A. Tate & Curt Hibbs &

Ruby on Rails: Up and Running (¥ 14k
Ruby on Rails: Up and Running

L L # R
mwé@W%?@@H%é

O’REILLY*®

Beijing « Cambridge » Farnham ¢ Koln + Paris » Sebastopol « Taipei » Tokyo

O'Reilly Media, Inc. £ 4 b X 5 & it h #&

FRAAXFHRM

BPEREE (CIP) &8

Ruby on Rails: Up and Running / (3£) #4F (Tate,B.A)) ,
(%) &M (Hibbs,G.) & . —RHAE . —ER: FH
KF L, 2006.11

354 R 3C: Ruby on Rails: Up and Running

ISBN 7-5641-0569-0

I R.. 1.0O%.. OF .. 0. HHEHML - BFE
-3 IV.TP393.092

B R A B 4518 CIP HimeF (2006) % 1154855

LHERBGEER A& RIS
EF. 10-2006-258 2

©2006 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press, 2006.
Authorized reprint of the original English edition, 2006 O'Reilly Media, Inc., the owner f all rights to publish
and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
* L& & O'Reilly Media, Inc. # #& 2006,

E L PR A dh K R R 2006, LS ER IR 69 b MRAe 4K 4 AR 2]k RS A 4K B ARSI BT -———-ORell]y
Media, Inc. #5357,

WAFTAT, ABBERHT, AHOETHRSfo SR REUEITH X T4,

3 4/ Ruby on Rails: Up and Running (B2EN}R)

3 S/ ISBN 7-5641-0569-0

RSB/ Skik

1 i%it/ Karen Montgomery, 3fi

HIR & AT/ B A%H AR (press.seu.edu.cn)

Hh b/ FERIOAEEE 2S5 (MBS 210096)

& W BHFERE

Ef R/ e ENRIABRA T

FF A/ 187TZE K x 980 &N 16 FAE 11.5E0%k
hik w/ 2006411 A% 1 MR 20064 11 A4 1 RENRY
El %/ 0001-3000 i}

E #fr/ 26.005T (#t)

O'Reilly Media, Inc. 448

O'Reilly Media, Inc. 2R E7£ UNIX, X, Internet fi b F R EZLBEBHEAE
MR TE, FRBEVLHR A,

M B4R (The Whole Internet User's Guide & Catalog) (#£0£92\ 3t B HBIEiEH
S BERENSOES Y —) B GNN (BEE Internet [] AR L), B
WebSite (8 — /N 5.H PCHIWeb IRE ¥ 84k), O'Reilly Media, Inc.—H 4t F Internet
REEIBRTAY .

2B EARBEED, OReilly Media, Inc. R BB ENITEIEBHKE — 85—
FHE—RAR. SKEHEHENEBHRBHALL, O'Reilly Media, Inc. AFHE
R BN E L E R, XES OReilly Media, Inc. JER T — A ¥ AR FH b HAR RS
AUt &, O'Reilly Media, Inc. iAW A ALAGTHRBE R, XER LS
M AREK. OReilly Media, Inc. BH L EEHEERE — MF S RHEXSE
BHHEAREX, SWEK, MAALRSENE, OReilly Media, Inc.(kFEM 1K
#EHEA, B4 O'Reilly Media, Inc. & 5 EHLFBKRAEE, FrLL O'Reilly
Media, Inc. EHH L EEFEMH2ES.

tH ki it AR

BE T ENBEROERRITZMEA, AREESA—ITHARER BROFHL, HRE
PLEARBIR RA ATk AR, Bk Gz B % EEERER T EROLW, K,
THRHL G A B AR SR HE 2 PR AR BT R ey, A T B E N B R A SIS — iRl
TRRE SR FRIE AR, R AL H L0k E O'Reilly Meida, Inc il thil, #hk
SR EA RMRRNREAR R EXTRGRER BANEE, AR SE #ik
PR A RBRAIRE . Hd, BERBEHRSESNES ‘RAE” MR, FE K
RS RIALIRE.

BAF IR AR, B 5| HRB R B AT LA ARA R . BRI RA A
R R Az RO 2 T T4 BB B , 3 A AL AR R R RA FHR . o1
EERHERAIE MR,

BA R —#ERCENRE 45, .

o (BTEAEM Ajax) (BEIR)

e (Ajax Hacks) (BEIIR)

o (BEAFRMR Linux MLRNEY (HEAR)
o (WebiRitHAFM E=KD) (FER)
o (REEFMERY (FEENRR)

o {Ruby on Rails: Up and Running) (FZENAR)
e {Ruby Cookbook) (EZENRR)

e (Python & FE=IR) (FLENAR)

o (Python HiARFM FhRY (REDNR)
o (AjaxiZiEERY (BENRR)

o (LA BEREY (FENRR)

o (APFEIRHER) (RER)

Preface

The Ruby on Rails phenomenon is sweeping through our industry with reckless dis-
regard for established programming languages, longstanding conventions, or com-
mercial support. You can get a whole lot of information on Ruby on Rails from
articles on the Web, excellent books, and even formal coursework. However, there’s
something missing. How does an established programmer, armed with nothing more
than a little Ruby knowledge, go just beyond the basics, and be productive in Rails?

With Ruby on Rails: Up and Running, we are not going to reiterate the reference
manual or replace Google. Instead, we’ll strive to give you the big picture of how
Rails applications hold together and tell you where to go for the information that we
don’t cover in the chapters. You will see how Rails dynamically adds features to all
database models, called Active Record objects. By understanding the big picture,
you’ll be able to make better use of the best reference manuals to fill in the details.

We won'’t try to make you digest a whole lot of words. Instead, we’ll give you the
theory in the context of an end-to-end application. We’ll walk you through the cre-
ation of a simple project—one that is a little more demanding than a blog or shop-
ping cart, but with a simple enough structure that a Rails beginner will be able to
quickly understand what’s going on.

We're not going to try to cover each new feature. Instead, we’ll show you the ones
we see as the backbone, forming the most important elements to understand. We
will also cover migrations and Ajax in some detail, because you won’t find too much
information on those two frameworks yet.

In short, we’re not trying to build a comprehensive Rails library. We’re going to give
you the foundation you need to get up and running.

Who Should Read This Book?

Ruby on Rails: Up and Running is for experienced developers who are new to Rails
and possibly to Ruby. To use this book, you don’t have to be a strong Ruby

programmer. We do expect you to be a programmer, though. You should know
enough about your chosen platform to be able to write programs, install software,
run scripts using the system console, edit files, use a database, and understand how
basic web applications work.

Conventions Used in This Book

The following typographic conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators

(such as Alt and Curl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, the contents of files, and the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

oA
Rty A
as
(‘t‘ »
N

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

This icon signifies a tip, suggestion, or general note.

You can get sample code at the main page for Ruby on Rails: Up and Running: http://
www.oreilly.com/catalog/rubyrails/. You will find a ZIP file that contains the sample

X | Preface

project as it exists after each chapter, with each instance of the sample application
numbered by chapter. If you want to-skip a chapter, just download the right ZIP file.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Ruby on Rails: Up and Running by Bruce
A, Tate and Curt Hibbs. Copyright 2006 O’Reilly Media, Inc., 978-0-596-10132-9.”

If you feel that your use of code examples falls outside fair use or the permission
given here, feel free to contact us at permissions@oreilly.com.

Platforms

Ruby on Rails is cross-platform, but Unix and Windows shells behave differently.
For consistency, we use Windows throughout the book. You can easily run the
examples on the Unix or Mac OS X operating systems as well. You'll see a couple of
minor differences:

* On Windows, you can specify paths with either the forward slash (/) or back-
slash (\) character. We'll try to be consistent and use the forward slash to spec-
ify all paths.

* On Windows, to run the various Ruby scripts that make up Rails, you need to
explicitly type ruby. On Unix environments, you don’t. If you’re running Unix,
and you are instructed to type the command ruby script/server, feel free to
omit the ruby.

* On Windows, to run a process in a separate shell, precede the command with
start. On Unix and Mac OS X, append an ampersand (&) character to run the
command in the background.

Safari® Enabled

- When you see a Safari® Enabled icon on the cover of your favorite tech-
Bim!“i. nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

How to Contact Us

“We have tested and verified the information in this book and in the source code to
the best of our ability, but given the amount of text and the rapid evolution of

Preface | xi

technology, you may find that features have changed or that we have made mis-
takes. If so, please notify us by writing to:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can also send messages electronically. To be put on the mailing list or request a
catalog, send email to:

info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

As mentioned in the earlier section, we have a web site for this book where you can
find code, errata (previously reported errors and corrections available for public
view), and other book information. You can access this web site at:

http:/lwww.oreilly.com/catalog/rubyrails
For more information about this book and others, see the O’Reilly web site:

http:/lwww.oreilly.com

Acknowledgments

Writing a book is a demanding exercise, taking passion, commitment, and persis-
tence. The authors on the cover get all of the glory (and possibly the blame). Many
people contribute to a book. We’d like to mention the people who made writing this
book such a fulfilling experience.

Collectively, Curt and Bruce would like to thank the outstanding team of reviewers
who provided so many great comments, including David Mabelle, Mauro Cicio,
Brooke Hedrick, Faisal Jawdat, Shane Claussen, Leo de Blaauw, Anne Bowman, Seth
Havermann, Dave Hastings, and Randy Hanford. We’d also like to thank David
Geary for fleshing out some of the early ideas in Photo Share.

Ruby on Rails: Up and Running would be nothing without the excellent contribu-
tions of the core Ruby on Rails team. We would like to thank David Heinemeier
Hansson (the creator of Rails), Florian Weber, Jamis Buck, Jeremy Kemper, Leon
Breedt, Marcel Molina, Jr., Michael Koziarski, Nicholas Seckar, Sam Stephenson,
Scott Barron, Thomas Fuchs, and Tobias Luetke. Ruby is a fantastic language, and
we would like to thank the many who made it so. We throw out specific thanks to
Yukihiro Matsumoto (a.k.a. “Matz”), the creator of Ruby, and to Dave Thomas and

xi | Preface

Andy Hunt, without whom Ruby might have remained virtually unknown outside of
Japan.

Bruce would like to specifically thank Curt, for stepping into this project after it
seemed that it was dead. Also, thanks to those at AutoGas who were so instrumental
in trying this technology within the context of a real production application—espe-
cially the core development team, including Mathew Varghese, Karl Hoenshel, Cheri
Byerley, Chris Gindorf, and Colby Blaisdell. Their collective experience shaped this
book more than you will ever know. Thanks to my Dutch friend Leo, again, for
being such a supportive influence on this book, though you’re mostly a Java devel-
oper. You have had more influence on me than you might expect. More than anyone
else, I would like to thank my family. Kayla and Julia, you are the sparks in my soul
that keep the creative fires burning. Maggie, you are my inspiration, and I love you
more than I can ever say.

Curt would like to thank his wife, Wasana, for letting him disappear behind his com-
puter screen late into the night (and sometimes into the following day) without com-
plaint. T would also like to thank my friends at O’Reilly, for giving me a forum to
spread the word about the incredible productivity advantages of Ruby on Rails. Spe-
cifically, I'd like to thank chromatic for publishing my ONLamp.com articles, and

Mike Loukides for not giving up when I kept telling him I didn’t want to write a
book.

Preface | xiii

Preface

1.

Zero to Sixty: Introducing Rails
Rails Strengths

Putting Rails into Action
Organization

The Web Server

Creating a Controller

Building a View

Tying the Controller to the View
Under the Hood

What’s Next?

Active Record Basics
Active Record Basics
Introducing Photo Share
Schema Migrations

Basic Active Record Classes
Attributes

Complex Classes

Behavior

Moving Forward

Active Record Relationships . . .
belongs_to

has_many

has_one

Table of Contents

AN L W N

10
13
15
16
17

...................................... 18
18
21
22
25
26
30
33
35

...................................... 36
37
40
43

What You Haven’t Seen 52

Looking Ahead 53

4, Scaffolding 54
Using the Scaffold Method 54
Replacing Scaffolding 57
Generating Scaffolding Code 60
Moving Forward 64

5. ExtendingViews 65
The Big Picture 65
Seeing Real Photos 67
View Templates 68
Setting the Default Root 75
Stylesheets 75
Hierarchical Categories 78
Styling the Slideshows 84

6. AJaX 91
How Rails Implements Ajax , 91
Playing a Slideshow 92
Using Drag-and-Drop to Reorder Slides 95
Drag and Drop Everything (Almost Everything) 99
Filtering by Category 106

7. Testing m
Background 111
Ruby’s Test::Unit 112
Testing in Rails . 114
Wrapping Up 126

A. InstallingRails 129
B. QuickReferencel 134
Index ... 163

viii | Table of Contents

CHAPTER 1
Zero to Sixty: Introducing Rails

Rails may just be the most important open source project to be introduced in the
past 10 years. It’s promoted as one of the most productive web development frame-
works of all time and is based on the increasingly important Ruby programming lan-
guage. What has happened so far?

* By December 2006, you're likely to see more published books on Rails than any
of Java’s single flagship frameworks, including JSF, Spring, or Hibernate.

* The Rails framework has been downloaded at least 500,000 times in only its sec-
ond year, as of May 2006. These statistics compare favorably with the most pop-
ular open source frameworks in any language.”

* The Rails community mailing lists get hundreds of notes a day, compared to
dozens on the most popular web development frameworks in other languages.

* The Rails framework has caused an explosion in the use of the Ruby program-
ming language, which has been relatively obscure until recently.

* The Rails buzz generates increasingly hot debates on portals that focus on other
programming languages. The Java community in particular has fiercely debated
the Rails platform.

You don’t have to go far to find great overviews of Rails. You can watch several edu-
cational videos that show Rails in action, narrated by the founder David Heinemeier
Hansson. You can watch him build simple working applications, complete with a
backing database and validation, in less than 10 minutes. But unlike the many quick-
and-dirty environments you’ve seen, Rails lets you keep the quick and leave the dirty
behind. It lets you build clean applications based on the model-view-controller phi-
losophy. Rails is a special framework.

* The number 500,000 is actually a conservative estimate. Download statistics for a popular delivery vehicle,
called gems, make it easy to track the number of Rails distributions by gems, but many other distributions
exist, such as the Locomotive distribution on Mac OS X. The real download statistics could easily be twice
this number.

Sure, Rails has its limitations. Ruby has poor support for object-relational mapping
(ORM) for legacy schemas; the Rails approach is less powerful than Java’s approach,
for example.” Ruby does not yet have flagship integrated development environ-
ments. Every framework has limitations, and Rails is no different. But for a wide
range of applications, the strengths of Rails far outpace its weaknesses.

Rails Strengths

As you go through this book, you’ll learn how Rails can thrive without all of the
extensive libraries required by other languages. Ruby’s flexibility lets you extend
your applications in ways that might have been previously unavailable to you. You’ll
be able to use a Rails feature called scaffolding to put database-backed user inter-
faces in front of your customers quickly. Then, as you improve your code, the scaf-
folding melts away. You’ll be able to build database-backed model objects with just a
couple of lines of code, and Rails will fill in the tedious details.

The most common programming problem in today’s typical development project
involves building a web-based user interface to manage a relational database. For
that class of problems, Rails is much more productive than any other web develop-
ment framework either of us has ever used. The strengths aren’t limited to any single
groundbreaking invention; rather, Rails is packed with features that make you more
productive, with many of the following features building on one other:

Metaprogramming
Metaprogramming techniques use programs to write programs. Other frame-
works use extensive code generation, which gives users a one-time productivity
boost but little else, and customization scripts let the user add customization
code in only a small number of carefully selected points. Metaprogramming
replaces these two primitive techniques and eliminates their disadvantages. Ruby
is one of the best languages for metaprogramming, and Rails uses this capability
well. 1

Active Record
Rails introduces the Active Record framework, which saves objects to the data-
base. Based on a design pattern cataloged by Martin Fowler, the Rails version of
Active Record discovers the columns in a database schema and automatically
attaches them to your domain objects using metaprogramming. This approach
to wrapping database tables is simple, elegant, and powerful.

* For example, Hibernate supports three kinds of inheritance mapping, but Rails supports only single-table
inheritance. Hibernate supports composite keys, but Rails is much more limited.

T Rails also uses code generation but relies much more on metaprogramming for the heavy lifting.

2 | Chapter1: Zeroto Sixty: Introducing Rails

Convention over configuration
Most web development frameworks for .NET or Java force you to write pages of
configuration code. If you follow suggested naming conventions, Rails doesn’t
need much configuration. In fact, you can often cut your total configuration
code by a factor of five or more over similar Java frameworks just by following
common conventions.

Scaffolding
You often create temporary code in the early stages of development to help get
an application up quickly and see how major components work together. Rails
automatically creates much of the scaffolding you’ll need.

Built-in testing
Rails creates simple automated tests you can then extend. Rails also provides
supporting code called harnesses and fixtures that make test cases easier to write
and run. Ruby can then execute all your automated tests with the rake utility.

Three environments: development, testing, and production
Rails gives you three default environments: development, testing, and produc-
tion. Each behaves slightly differently, making your entire software development
cycle easier. For example, Rails creates a fresh copy of the Test database for each
test run.

There’s much more, too, including Ajax for rich user interfaces, partial views and
helpers for reusing view code, built-in caching, a mailing framework, and web ser-
vices. We can’t get to all of Rails’ features in this book; however, we will let you
know where to get more information. But the best way to appreciate Rails is to see it
in action, so let’s get to it.

Putting Rails into Action

You could manually install all of the components for Rails, but Ruby has something
called gems. The gem installer accesses a web site, Ruby Forge, and downloads an
application uni, called a gem, and all its dependencies. You can install Rails through
gems, requesting all dependencies, with this command:”

gem install rails --include-dependencies

That’s it—Rails is installed. There’s one caveat: you also need to install the database
support for your given database. If you've already installed MySQL, you're done. If

* If you want to code along with us, make sure you've installed Ruby and gems. Appendix A contains detailed
installation instructions.

Putting Rails into Action | 3

MVCand Model2

In the mid-1970s, the MVC (model-view-controller) strategy evolved in the Smalltalk
community to reduce coupling between business logic and presentation logic. With
MVC, you put your business logic into separate domain objects and isolate your pre-
sentation logic in a view, which presents data from domain objects. The controller
manages navigation between views, processes user input, and marshals the correct
domain objects between the model and view. Good programmers have used MVC ever
since, implementing MVC applications using frameworks written in many different
languages, including Ruby.

Web developers use a subtly different variant of MVC called Model2. Model2 uses the
same principles of MVC but tailors them for stateless web applications. In Model2
applications, a browser calls a controller via web standards. The controller interacts
with the model to get data and validate user input, and then makes domain objects
available to the view for display. Next, the controller invokes the correct view genera-
tor, based on validation results or retrieved data. The view layer generates a web page,
using data provided by the controller. The framework then returns the web page to the
user. In the Rails community, when someone says MVC, they’re referring to the
Model2 variant.

Model2 has been used in many successful projects spread across many programming
languages. In the Java community, Struts is the most common Model2 framework. In
Python, the flagship web development framework called Zope uses Model2. You can
read more about the model-view-controller strategy at http://en.wikipedia.org/wiki/
Model-view-controller.

not, go to http://rubyonrails.org for more details on Rails installation. Next, here’s
how to create a Rails project:

> rails chapter-1
create
create app/controllers
create app/helpers
create app/models
create app/views/layouts
create config/environments
create components
create db
create doc
create 1lib

create test/mocks/development
create test/mocks/test

create test/unit

create vendor

4 | Chapter1: Zeroto Sixty: Introducing Rails

create app/controllers/application.rb
create app/helpers/application_helper.rb
create test/test_helper.rb

create config/database.yml

We truncated the list, but you get the picture.

Organization

The directories created during installation provide a place for your code, scripts to
help you manage and build your application, and many other goodies. Later, we’ll
examine the most interesting directories in greater detail. For now, let’s take a quick
pass through the directory tree in the project we created:

app
This application organizes your application components. It’s got subdirectories

that hold the view (views and helpers), controller (controllers), and the backend
business logic (models).

components
This directory holds components—tiny self-contained applications that bundle
model, view, and controller.

config ,
This directory contains the small amount of configuration code that your appli-
cation will need, including your database configuration (in database.yml), your
Rails environment structure (environment.rb), and routing of incoming web
requests (routes.rb). You can also tailor the behavior of the three Rails environ-
ments for test, development, and deployment with files found in the
environments directory.

db
Usually, your Rails application will have model objects that access relational
database tables. You can manage the relational database with scripts you create
and place in this directory.

doc
Ruby has a framework, called RubyDoc, that can automatically generate docu-
mentation for code you create. You can assist RubyDoc with comments in your
code. This directory holds all the RubyDoc-generated Rails and application
documentation.

lib
You’ll put libraries here, unless they explicitly belong elsewhere (such as vendor
libraries).

Organization | 5

