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Preface

In the past years, all concepts in graphs were translated to hypergraphs, in special,
the definition of cycles in hypergraphs is the same as in graphs. As extension of
graphs, there are many results on trees, cycles, covering and coloring of hyper-
graphs.

In early 1980s, with the emergence of informational science, the information
scientists introduced decomposition join approach into the design and study of
databases with large sizes, while Tony T Lee pointed out “the core issue in the the-
ory of database dependences is information preserving decomposition of a relation
into several subrelations in such a way that the original relation can be regenerated
by join operation”. A decomposition of a relation induces a database scheme, that
is a hypergraph on the attributer set. Beeri, Fagin, Maier and Yarmakakis pointed
out “Berge-acyclicity is too restrictive an assumption to make about database
schemes”, and introduced a new definition of acyclic hypergraphs. We call the
definition the acyclic-axiom of hypergraphs. Information scientists have proved
that acyclic hypergraphs defined by the acyclic-axiom are very useful in database
theory. Ullman said “there are many equivalent definitions of acyclic hypergraphs
in the sense used in database theory; unfortunately, the notion, while intuitively
appealing, differs from that used by graph theorists”. I and my students investi-
gated the acyclic hypergraphs and obtained some theoretical results. These results
show that the acyclic-axiom of hypergraphs is reasonable and scientific.

The cycle-structure of hypergraphs plays an important role in the hypergraph
theory and the database theory. A cycle of a hypergraph is not only a local struc-
ture, but also has relations with the whole structure of the hypergraph. In the
cycle-axiom of hypergraphs, we found not only the local structure of a cycle were
characterized, but also the inter-relations displayed between it and other parts of
the hypergraph. This is a new idea and modular in discrete mathematics. In al-
gebra, there are similar modulars, for example, normal subgroups of groups, ideals
of rings, which are very important. Further more, the ideal theory of polynomial
rings F(z1,Ze,-- - ,Zn) of the field F is very essential in algebraical geometry. Sim-
ilarly, the cycle-axiom constitutes the foundation of hypergraph theory, and it will
develope discrete mathematics to a new stage. It is similar to Galois’s Theory in
algebra, the modern algebra was developed from Galois’s Theory.
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The cycle structure of hypergraph is very complex and the cycle-axiom of hy-
pergraphs displays the most essential role of hypergraphs. Cycles of a hypergraph
need to divide into two classes: pseudo-cycles and essential cycles. The essential
cyclomatic numbers of hypergraphs are given and the parameter is not monotone
for edges in hypergraphs. It undergoes a long process to find the cycle-axiom of
hypergraphs. In a few words, acyclic hypergraphs arise in the study of relational
database schemes, cycles of hypergraphs arise in the study of acyclic hypergraphs.

A new hypergraph theory will be formed. A cycle of a graph will be a special
degenerate case. I would like to collect the distributed papers to form a systemetic
book, which is the first book in the field and contsins some new results have not
published before.

This book consists of ten chapters. The first three chapters are preparatory
knowledge, the last seven chapters form the main parts of the book. This is a new
theoretical system of hypergraphs. The cycle-axiom constitutes foundation of the
theory.

It gives me a great pleasure to express gratitude to Professor Tony T Lee for
his help with co-operation to do research on this topic. I am grateful to Doctors
Haizhu Li, Guiying Yan, Baoguang Xu and Jiri Mutu for their help in a variety of
ways. Specially thank to Dr. Baoguang Xu for his carefully reading manuscript
improvement of original draft.

Specially, I express my great gratitude to Institute of Applied Mathematics,
Chinese Academy of Sciences, and Center of Graphs, Combinatories and Networks
in Academy of Mathematics and Systems Science National Nature Science Foun-
dation (No. 10671199) for aiding finacially to this book.

Jianfang Wang
October 2007
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Chapter 1

Basic Terminologies

Definition 1.1 Let V be a finite set, £ a set of subsets of V. We call £ to be a

hypergraph on V, if e # @ for anye € € and |J e = V. The elements of V and
ecf
the elements of € are called vertices and edges respectively.

If |e| = & for any e € £, then £ is called a k-uniform hypergraph. If k¥ = 2, then
£ is a graph.

Definition 1.2 A hypergraph € is called to be irreducible, or simple, if for any
pair of different edges ¢ and €', e\ €' # 2.

In the following all hypergraphs are irreducible except exposition.

Let £ and &£ be two hypergraphs on V. If £ C &, then £’ is called a partial
hypergraph of £. Let £ be a hypergraphon V, S Cc V, E[S] ={e€ £:e C S} is
called the induced partial hypergraph of £ induced by S.

Set VM) = {§CV:|S|=k}.

Let £ be a hypergraph on V, ) = {S € V) . S C e for some e € £}.

For example: V = {a,b,¢,d,e},E = {abed, abce, bede}, V) = {abc, abd, abe,
acd, ace, ade, bed, bee, bde, cde}, £(3) = {abe, abe, acd, ace, bed, bde, abd, acd, cde}.

Definition 1.3 A hypergraph £ is called to be conformal if for any clique ¢ of
&(2), there exists e € € such that QCe.

Definition 1.4 Let £ be a hypergraph on V. E = {€=V \e: e € £} is called the
adjoint hypergraph of £.

For example: V = {a,b,¢,d,e, f,g}, & = {abc,cde,def,efg}, € = {defg,abfg,
abeg, abed}.

Let € be a hypergraph on V. A vertex ¢ € V is called to be isolated if it only
belongs to one edge of £. An edge e is called an ear of £ if there exists another
edge e’ such that every vertex of e\ ¢ is isolated. If for any edge ¢’ € £ \ {e},
eNe' = @, then e is also an ear.
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For example: £ = {abc, cde, efa,acel, b, d, f are isolated vertices of £, abc, cde,
efa are ears of £.

The information scientists introduced the concept of acyclic hyper-
graphs!3:28,29.41] :
Acyclic-axiom A hypergraph is acyclic if it can be reduced to an empty set by
repeatedly using the following two operations:

GR;: delete z if z is an isolated vertex;

GRg: delete e; if there is an edge e;, such that e; C e, for any i # j.

An equivalent form: £ is an acyclic hypergraph if it can be reduced to an empty
set by removing repeatedly ears.
Graham reduction Let £ be a hypergraph. The Graham reduction of £ is
obtained from £ by using repeatedly the operation GR; and GRj for £, or by
using ear removing unlit impossible.

Equivalently, let £ be a hypergraph, the hypergraph £’ obtained from £ by
using ear Temoving until impossible is also called the Graham reduction of £.

The acyclic-axiom of hypergraphs A hypergraph £ is acyclic if its Graham
reduction is empty.

A hypergraph is cyclic if it is not acyclic.

A partial hypergraph of an acyclic hypergraph may be cyclic. Graphs have not
this property.

For example: £ = {abe, cde, efa, ace} is an acyclic hypergraph, £ = {abc, cde,
efa} is cyclic. See Fig.1.1.

Fig.1.1

Theorem 1.1 An acyclic hypergraph with at least two edges has at least two ears.

Proof We prove the theorem by induction on the number of edges. It is obvious
for an acyclic hypergraph with two edges.
Suppose the theorem is true for all acyclic hypergraphs with & > 2 edges, £ is
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an acyclic hypergraph with k£ + 1 edges. Since £ is acyclic, £ has an ear e. Let
&1 =& — e and e1 € &; such that each vertex of e\ e; is isolated, so £; is acyclic.
By the induction hypothesis, £ has two ears ez, e3 since removing e from £ can
not generate new ears except e, at least one of e2 and e3 is an ear of £. a

Definition 1.5 (Running Intersection Property) A hypergraph £ has running
intersection property if there erists an order ey, es, - ,em of € such that e;N (el U
eaU---Ue;_1) Cej, for any i,2 < i < m, there is j; < 4.

Theorem 1.20:2841 4 hypergraph £ is acyclic iff £ has the running intersection

property.

Proof Let |£] = m. Suppose € is acyclic, then there exists an order e1,ez2,--- , e,
of £ such that e; isanearof £,7=1,2,--- ,m, where £, =&, & = &1\ {€i+1},
i=1,2,---,m—1. So & is acyclic for any i, 2 < ¢ < m. Thus, there is j; < i

such that e;N(egUez U---Ue;_1) C ej, for any 4,2 < 1 < m. £ has the running
intersection property.

Now suppose £ has the intersection property, then there exists an order e;,
€2, -+ ,em of € such that e;N{e; Uea U---Ue;_1) C ey, for any ¢,2 < i < m, there
is j; < 1. Hence ¢; is an ear of &; for 2 < ¢ < m. Thus the Graham reduction of £
is empty. O

Definition 1.6 Let £ be a hypergraph, the join-tree of £ is a tree T, in which the
vertices of T are the edges of £ satisfying the following properties:

(1) the edge (es,€;) has the labeling e; Ne;.

(2) For any pair e;,e;, u € e; Ne;, each edge in the unique path from e; to e;
in T includes u.

For example: & = {abcd,bede, edf, beeg, uvw, vz, uwy}, the tree shown in
Fig.1.2 is a join-tree of the hypergraph £.

b
abed bed bede ¢ bceg uww
c VN
Cdf uvx uwy

Fig.1.2 A join-tree of the hypergraph £

Theorem 1.381 A hypergraph £ is acyclic iff £ has a join-tree.

Proof Suppose £ has a join-tree 7', then T has at least two leaves. Let e; be a
leaf of T, e2 the adjacent vertex of e; in T'. For any e s e1, the path from e to e; in
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T includes the edge (e1,€2), so eNe; CeyNez ande; isanearof £. Ty =T —e; is
a join-tree of £ —e;. To remove a leaf of T; (which is an ear of £ — e1) continuesly
will reduce an empty set. That is, £ will be reduced to empty set. Hence £ is
acyclic.

Now suppose £ is acyclic hypergraph. We shall prove £ has a join-tree. By
induction on the number of edges. When |€| = 2, it is obvious. Assume it is true
for |£'| < m and |€| = m. Since £ is acyclic, £ has an ear e;. Let £ =& —e; and
ez € £ such that every vertex of e; \ ey is isolated. By the induction hypothesis,
&' has a join-tree T'. Adding the vertex e; and the edge (e1,e2) to T” forms a tree
T. Label the edge (e, e2) by e1 Nea. We shall prove T is a join-tree of £. For any
pair of e; and e;, if both of e; # €, and e; # e; are hold, the path from e; to e; in
T is also the (e;, e;)-path in T”. Thus each vertex of e; Ne; is on every edge in the
(ei,e;)-path in T. Next, we prove that for any e € £, every edge of the path from
e to e; in T include eNe,. Since every vertex of e; \ 2 is isolated. e;Ne =eaNe.
Let u € e; N eg, then by the induction hypothesis, in 77 the labeling of every edge
of the path P’ from e to es includes u. The edge (€1, e2) includes u, so P’ + (e, e2)
is the unique path from e to e; in T'. T is a join-tree of £. O

Example 1.1 £ = {abc, cde, efa,ace}, obviously, £ is an acyclic hypergraph. A

0 = ° - o

Fig.1.3 Join-tree

join-tree of £ is shown in Fig.1.3.

Example 1.2 £ = {abcd, bede, cdef, cdh,defg}, abed Ncdh = cd. The labeling of
each edge in the path from abed to cdh in a join-tree of £ contains cd. It is shown

in Fig.1.4.
@ cdh

bed cd

bede cde cdef def

Fig.1.4 Join-tree




Chapter 2

Relational Databases

The database theory plays the centre role in information theory. The information
scientists introduced the concept of acyclic hypergraphs when they studied rela-
tional databases. In this chapter, we simply introduce some concepts and results
of relational databases. For the references see [3,28,29,41].

Let Q@ = {A;, A2,--- , Ap} be a set of attributers. For each attributer A;, there
is a set of possible values called its domain, denoted by dom(A;). That is, the set
of values which A; can takes.

A relation on 2, denoted by R[], is a subset of dom(A4;)xdom(Az) x -+ x
dom(A,). Let D; =dom(4;), then R[Q] C Dy x Da X --- X Dy, n is called the
arity or the degree of R[{}]. A relation is a table. Each row is called a tuple, a co-
lumn corresponds an attributer. The set of attributes in a relation is called a
relation scheme. D; x Dy X .-+ x D, is the set of all n-tuples (a1,a2, - ,an),
where a; € D;. For example, if n =2, Dy = {0,1}, Dy = {a,b,c}, then Dy x Dy =
{(0,a),(0,d),(0,¢),(1,a),(1,b),(1,¢)}. {(0,a),(0,c),(1,b)} is a relation. See the
following Table 1.

The tuple (a1, a2, - ,an) has n components, the i-th compo- Table 1
nent is a;. In general, we denote (a;, az,--- ,an) by a1a2-- - an. 4, A
Let © be the set of attributers, ; C Q,i =1,2,--- ,m. If 0 a
m
for any i € {1,2,--- ,m}, Q; # @ and |J @ =, then we call 0 c
i=1
D = {Q,Q2,---,Q,} as a database scheme on €. If R; is a 1 b

relation on ;, we call R = {R;, Ra,--- , Rm} as a database on
D.

2.1 Operators and operands in relational algebra

Recall that a relation is a set of n-tuples for some fixed n, the arity of the relation.
‘We sometimes find it is convenient to give the components of the tuples names,
which are the attributers of its relation, of course, while sometimes it is convenient
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to let the components be anonymous and to refer to them by numbers. When
defining relational algebra, we assume columns need not be named, and order in
tuples is significant. When dealing with relations as database, it is assumed that
all relations are finite, and we shall adopt this assumption without explicit mansion
in the future.

The operands of relational algebra are either constant relations or variables
denoting relations of a fixed arity.

(1) Union. The union of relations R and 9, denoted by RU S, is the set of
tuples in R or S or both. We require that R and S have the same arity.

(2) Set difference. The difference between relations R and S, denoted by R— S,
is the set of tuples in R but not in S. We again require that R and S have the
same arity.

(3) Cartesian product. Let R and S be relations of arity k1 and ks, respectively,
then R x S, the Cartesian product of R and S is the set of (k; + k2) -tuples whose
first k1 components form a tuple in R and whose last k3 components form a tuple
in S.

(4) Projection. The idea of this operation is that for a relation R, to remove
some of the components and/or rearrange some of remaining components for a
relation R. If R is a relation of arity k, we let IL;, ;,... i,, (R), where the i’s are
distinct integers in the range 1 to k, denote the projection of R onto components
i1,%2, " ,im, that is, the set of m-tuples ajaz:--an such that there is some k-
tuple biby--- bk in R with a; = b;;, j = 1,2,--- ,m. For example, II31(R) is the
set by taking each tuple ¢t in R such that it is a 2-tuple formed from the third and
first components of ¢ in the order. If R has attributes labeling its columns, then
we substitute attribute names for component numbers, and use the same attribute
names in the projected relation. For example, if relation R is R[A, B, C, D], then
IIc a(R) is the same as I3 1 (R), and the resulting relation has attribute C naming
its first column and attribute A naming its second column.

(5) Selection. Let F be a formula involving:

(i) Operands which are constants or component number.

(ii) The arithmetic comparison operators <, =, >, €, # and >, and

(iii) The logical operators A(and), \/(or), and —(not).

The op(R) is the set of tuples ¢t in R satisfying the following properties: we
substitute the i-th component of ¢t for any occurrences of the number 7 in for-
mula F for all i, the formula F becomes true. For example, o2-3(R) denotes the
set of tuples in R whose second component exceeds its third component, while
O1=“Smith" \/ 2=“Jones" () is the set of tuples in R whose first component has the
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value “Smith” or the second component has the value “Jones”. If the columns a
relation are named, then the selected formular can be instead by name.
(6) Intersection. RN S is shorthand for R - (R — §).

Example 2.1 Let R, S show as in Fig.2.1.

A|B|C D

R=]a | b c S=1]b]|g| e
dlalf dlaif
c b d

Fig.2.1

Then the operations of (a) RUS, (b) R—S, (¢) Rx S, (d) mac(R), (¢) cp=p(R)
are as follows (Fig.2.2).

a|b|ec b| e A|B|(C|D|E|F AlC B
ajd)|f cibid a | b e blg)la a | ¢ a | b c
c|b|d al b c d{alf d | f c | b d
b|lgla d|la| f b |l g | a c | d

d|la | f|ld]la]|lf

c|bld|b)lg|a

c|bld|dlalf
(a) RUS (b) RS (c) RxS @) mac(B) (o) onb(R)

Fig.2.2 Some operations

{7) Quotient. Let R and S be relations of arity r and s, respectively, where
r > sand S # &, then R+ S is the set of (r — s)-tuples ¢ such that for all s-tuples
u© in S, the tuple tu is in BR. Let T stand for II; .. .—s(R), then (T x §) — R
is the set of r-tuples that are not in R, but are formed by taking the first » — s
components of a tuple in R and following it by a tuple in S. Let

V= H1,2,~- ,r_s((T X S) — R),

V is the set of (r — s) -tuples ¢ such that tu in the first » — s components of a tuple
in R is not in R for some s-tuple « in S. Hence T'— V is R +'S, that is,

R+S= H1,2’... ,r—s(R) - HI’Q’... ,r_a((Hl’;;,... ,.,-_S(R) X S) — R)
Example 2.2 R+ S is shown in Fig.2.3.

(8). Join. The §-join of R and S on columns ¢ and j denoted by R t<jg; S,
where # is an arithmetic comparison operator (=, <, and so on), is shorthand for
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Tig(r+5) (R % §), if R is of arity r. That is, the 6-join of R and S is those tuples
in the Cartesian product of R and S such that the i-th component of R stands
in relation 8 to j-th component of S. If 8 is “=", the operation is often called an
equijoin.

albic|d d a b
a|lb|lellf f e d
blclelf
eld|eld
e|ld|el|f
al|bid|e
(a) R (b) S (c) R+ S
Fig.2.3

Example 2.3 Relation R, S and Ry, S are shown in Fig.2.4.

A| B C D\ FE A|B|C|D]|E

1 2 3 3 1 1 2 3 3 1

4|5 6 6 2 1 2 3 6 2

4 5 6 4 5 6 6 2

(a) Relation R (b) S (c) Rwp<p S
Fig.2.4

(9) Natural Join. The natural join, denoted by R < S, is applicable only when
both R and S have columns that named by attributes. To compute R <., we

(i) Compute R x S.

(ii) For each attribute A which is in both a column in R and a column in §
select from R x S those tuples whose values agree in the columns for R+ A and
S - A. Recall that R - A is the name of the column of R x S corresponding to the
column A of R, and S - A is defined analogously.

(iii) For each attribute A above, project out the column $S - A. Formally, if
Aj, Ap, -+, Ag are all the attribute names used for both R and S, R < S is
I, ig, o im OR-A;=S-A1A-AR-Ax =9 - Ax (R X S), where i1,d2,- -+ ,4m is the list of
all components of R x S in order the components S - 4; ArrAS- Ag.

Example 2.4 R, S and RS are shown in Fig.2.5.

(10) Semijoin. The semijoin of relations R and S, denoted by R x S, is IIg(R <
S). Note that, as usual, taking the name of a relation is idenlical with its relation
scheme. Observe the semijoin is not a symmetric operation. R x S is IIg(R < S).
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A|lB}|C B|C | D AlB|C | D
a b c b c d a b c d
d b c b c e a b c e
b b | f a | d| b d| b | c | d
c a d d b c e

c a d b

(a) R (b) 8 (c) R S
Fig.2.5

Example 2.5 R, S and RS are shown in Fig.2.5. Rx S and R x S are shown
in Fig.2.6.

A| B | C B|C|D
a b c b c d
d b c b ¢ e
c a d a d b
(a) Rx S bYRXS
Fig.2.6

Perhaps a better way to view the semijoin R x S is that we project S onto the
set of attributes RN S, then delete from R all tuples ¢ such that ¢{R N S] is not
in this projection. That is, we remove from R all tuples that are dangling in the
sense that they produce no tuples in the join R S.

The way we take semijoin in a distributed environment reflects the second
meaning of this operation. We project S onto RN .S and ship the projection to
the node of R. At the latter node, we perform what is technically a natural join
R <1 I png(S), to delete the tuples that dangle in R. Suppose that the projections
of R and S onto § N R have size v’ and s’ and R x S and S x R have size " and
s, respectively. Next, we compute R < S by the following steps:

(1) Ship IIgns(S) to the node of R.

(2) Compute R x S at the node of R.

(3) Ship R ix S to the node of S.

(4) Compute (R x S8) > S at the node of S.

Theorem 2.1 (Rx S)xS=RxS.

Proof Since Rx S = [Izr(R = S), it follows that R x S C R, thus (R X S) x
S C R S. Conversely, suppose ¢ is a tuple in R < S, then u = ¢[R] must be in
R, and V = t[S] must be in S. It follows that u isin Rx S, sotisin (Rx S)a S.
Thus RS C(Rx S)< S. a
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Example 2.6 R[A, B] and S[B, C] are shown in Fig.2.7.
R x S = {ablab isin R and b is in S'}. Since Ig(S) = {1,7} ab is only 0, 1.
Then

Rx §={0,1}, (RxS)»=S=1{0,1,6}=RxS. (2.1)
A B B|C
o1 1]6
2|3 7|8
4|5
(a) R (b) S
Fig.2.7

(11) Semijoin programs. When we must take the join of more two relations in
a distributed database, the number of ways we can take semijoins grows rapidly.
In general, there may be some benefit to taking a large number of semijoins, the
end result of which is that one or more of the relations have been made as small
as possible. It is not hard to see that if we have relations Ry, Ry, - , R,,, whose
natural join we wish to take, then the smallest relation that R; can become by the
use of semijions is IIg, (Ry <t Ry b<t -« - >4 Ry,). We call this relation the reduction
of R;(with respect to Ry, Rz, -, Ry).

Usually, all we want in our query is the reduction of one R;. This is true for
the familiar sort of query where we fix a value for one attribute and ask for the
associated values of another attribute.

Example 2.7 Let A, B, C be attributes, AB, BC, AC represent R[A, B], R[B, C|,
R[A, C] respectively and for some n, suppose that the current values of these
relations are AB = {a1b1,a3b2, - ,anbn}, BC = {bici,baca, -+ ,bncn}, AC =
{azc1,a3cz, -+, anti1cn}. It is easy to see that the join of these three relations is
empty. However, it is easy to show by induction on i, that after ¢ steps of any
semijoin program, no tuple will be deleted from any of the three relations unless
it has a value with subscript 7 or less, or a subscript n — % + 1 or more. For ex-
ample, azcy could not be deleted until the second step. In fact, it takes six steps
to delete that tuple from AC; the shortest semijoin program is AB := AB x AC;
BC := BC x AB; AC := AC x AC x BC; AB := AB x AC; BC := BC x AB;
AC = AC'x BC. It turns out that acyclicity has something to do with the question
of whether a semijoin to reduce a relation exists. In fact, any natural join can be
viewed as a hypergraph, where the vertices are attributes and the edges are relation
schemes in the join.
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Theorem 2.2[41 If a join expression has an acyclic hypergraph, then there is a
semijoin program to reduce any relation in the join. Conversely, if the hypergraph is
cyclic, then there is at least one relation for which no semijoin program is quaranted
to compute its reduction.

Proof The converse portion, showing that cyclic hypergraph do not have semi-
join program reducing each of the relations, is left as a rather difficult exercise
generalizing Example 2.7. The first part of the theorem can be proved by giving
the following algorithm for constructing a semijoin program that computes the re-
duction of a particular relation R. The algorithm is defined inductively, starting
with join of a single relation R, for which the empty program suffices, and pro-
ceeding to progressively large sets of relations that have an acyclic hypergraph.
Suppose we have an acyclic hypergraph of more than one edge. Then by definition,
it has an ear, said edge S. Assume at first S # R, as S is an ear, there must be
some edge T such that each vertex in S is either unique to S or in T'. Let us start
our semijoin program with the step T':=T x S.

By induction, the remaining hypergraph, which must also be acyclic, yields a
semijoin program to compute IIg(R; <t Rg < - -+ < Ry ), where Ry o< Ry i< -+ - I
Ry are the edges of the remaining hypergraph. Suppose without loss of generality
that T = R;. If we proceed the constructed program with R; := R; X S, the
resulting program computes IIg((R; % S) < Rz &< - - - b 7% ). As S has no attribute
in common with any of the R;’s that it does not have in common with T = R;, the
above expression is equal to IIg(S v Ry &4 - - - >1 Ry ), proving that the constructed
semijoin program reduced R.

If S = R, by induction to construct a semijoin program to reduce T. In re-
maining hypergraph, we follow it by the step R := R x T. The resulting program
R x (II7(Rq b - - - <1 Ry ) is the reduction of R, since R has no attribute in common
with the R;’s that it does not share with T'. O

Example 2.8 Fig.2.8 shows an acyclic hypergraph.
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Fig.2.8



