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Foreword

The important summarizing work of RENJI TAO appears now in book form.
It is a great pleasure for me to see this happen, especially because I have
known Professor Tac as one of the very early contributors to public-key
cryptography. The research community has missed a book such as the present
one now published by Tsinghua University Press and Springer. The book will
be of special interest for students and researchers in the theories of finite
automata, cryptography and error correcting codes.

One of the phenomena characterizing the second half of the last century is
the rapid growth of computer science and informatics in general. The theory
of finite automata, models of computing devices with a finite non-extensible
memory, was initiated in the 1940s and 1950s, mainly by McCulloch, Pitts
and Kleene. It has found numerous applications in most diverse areas, as
exemplified by the series of yearly international conferences in implemen-
tation and applications of finite automata. The present work by Professor
Tao develops a theory and contains strong results concerning invertible finite
automata: the input sequence can be recovered from the output sequence.
This is a desirable feature both in cryptography and error correcting codes.
The book considers various types of invertibility and, for instance, the effect
of bounded delay to invertibility.

Cryptography, secret writing, has grown enormously both in extent and
importance and quality during the past few decades. This is obvious in view
of the fact that so many transactions and so much confidential information
are nowadays sent over the Internet. After the introduction of public-key
cryptography by Diffie and Hellman in the 1970s, many devices were tried
and applied for the construction of public-key cryptosystems. Professor Tao
was one of such initiators in applying invertible finite automata. Although
mostly in Chinese, his work was known also in the West. I referred to it
already some twenty years ago. Later on, for instance, a PhD thesis was
written about this topic in my university.

Many of the results in this book appear now for the first time in book
form. The book systematizes important and essential results, as well as gives
a comprehensive list of references. It can be used also as a starting point
for further study. Different parts of the book are of varying importance for
students and researchers, depending on their particular interests. Professor
Tao gives useful guidelines about this in his Preface.



ii Foreword

Much of the material in this book has not been previously available for
western researchers. As a consequence, some of the results obtained by Profes-
sor Tao and his group already in the late 1970s have been independently redis-
covered later. This concerns especially shift register sequences, for instance,
the decimation sequence and the linear complexity of the product sequence.

I feel grateful and honored that Professor Tao has asked me to write this
preface. I wish success for the book.

Turku, Finland, January 2008 Arto Salomaa



Preface

Automata theory is a mathematical theory to investigate behavior, structure
and their relationship to discrete and digital systems such as algorithms,
nerve nets, digital circuits, and so on. The first investigation of automata
theory goes back to A. M. Turing in 1936 for the formulation of the informal
idea of algorithms. Finite automata model the discrete and digital systems
with finite “memory”, for example, digital circuits. The theory of finite au-
tomata has received considerable attention and found applications in areas
of computer, communication, automatic control, and biology, since the pio-
neering works of Kleene, Huffman, and Moore in the 1950s. Among others,
autonomous finite automata including shift registers are used to generate
pseudo-random sequences, and finite automata with invertibility are used to
model encoders and decoders for error correcting and cipher as well as to
solve topics in pure mathematics such as the Burnside problem for torsion
groups. This book is devoted to the invertibility theory of finite automata
and its application to cryptography. The book also focuses on autonomous
finite automata and Latin arrays which are relative to the canonical form for
one key cryptosystems based on finite automata.

After reviewing some basic concepts and notations on relation, function
and graph, Chap. 1 gives the concept of finite automata, three types of “in-
vertibility” for finite automata, and proves the equivalence between “feedfor-
ward invertibility” and “boundedness of decoding error propagation” which
is the starting point of studying one key cryptosystems based on finite au-
tomata; a tool using labelled trees to represent states of finite automata is
also given. In addition, some results on linear finite automata over finite fields
are reviewed, in preparation for Chap. 7. Chapter 2 analyzes finite automata
from the aspects of minimal output weight and input set. Results for weakly
invertible finite automata are in return applied to establish the mutual in-
vertibility for finite automata, and to evaluate complexity of searching an
input given an output and an initial state for a kind of weakly invertible
finite automata. In Chap. 3 the R, R} transformation method is presented
for generating a kind of weakly invertible finite automata and correspondent
weak inverse finite automata which are used in key generation in Chap. 9;
this method is also used to solve the structure problem for quasi-linear finite
automata over finite fields. Chapter 4 first discusses the relation between two
linear R, R transformation sequences and “composition” of R, R trans-
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formation sequences, then the relation of inversion by R, R transformation
method with inversion by reduced echelon matrix method and by canoni-
cal diagonal matrix polynomial method. Chapter 5 deals with the structure
problem of feedforward inverse finite automata. Explicit expressions of feed-
forward inverse finite automata with delay < 2 are given. The result for delay
0 lays a foundation for the canonical form of one key cryptosystems based on
finite automata in Chap. 8. In Chap. 6, for any given finite automaton which
is invertible (weakly invertible, feedforward invertible, an inverse, or a weak
inverse, respectively), the structure of all its inverses (weak inverses, weak
inverses with bounded error propagation, original inverses, or original weak
inverses, respectively) is characterized. Chapter 7 deals with autonomous lin-
ear finite automata over finite fields. Main topics contain representation of
output sequences, translation, period, linearization, and decimation. The final
two chapters discuss the application to cryptography. A canonical form for
one key cryptosystems which can be implemented by finite automata without
plaintext expansion and with bounded decoding error propagation is given
in Chap. 8. As a component of the canonical form, the theory of Latin array
is also dealt with. Chapter 9 gives a public key cryptosystem based finite
automata and discusses its security. Some generalized cryptosystems are also
given.

The material of this book is mainly taken from the works of our research
group since the 1970s, except some basic results, for example, on linear fi-
nite automata and on partial finite automata. Of course, this book does not
contain all important topics on invertibility of finite automata which our re-
search group have investigated such as decomposition of finite automata and
linear finite automata over finite rings. Results presented here other than
Chaps. 1 and 7 are appearing for the first time in book form; Chapter 7 is
appearing for the first time in English which is originally published in [97]
and in Chap. 3 of the monograph [98]. This book is nearly self-contained,
but algebra is required as a mathematical background in topics on linear fi-
nite automata, linear R, R transformation, and Latin array; the reader is
referred to, for example, [16], or [42] for matrix theory, [142] for finite group.

This book pursues precision in logic, which is extremely important for a
mathematical theory. For automata theorists and other mathematicians in-
terested merely in the invertibility theory of finite automata, the readers may
read Chap. 1 to Chap. 6 and propose easily open problems on topics con-
cerned. For an algebraist interested in the theory of shift register sequences,
taking a glance at Chap. 7 is, at least to avoid overlap of research, harm-
less. A mathematician majoring in combinatory theory may be interested in
Sects. 8.2 and 8.3 of Chap. 8.
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For readers interested merely in one key cryptography, it is enough to
read Chap. 1 (except Subsect. 1.2.3 and Sect. 1.6), the first two sections of
Chap. 5, Chap. 7, and Chap. 8.

For readers interested merely in public key cryptography, they may read
Chap. 1 (except Subsect. 1.2.4 and Sects. 1.3 and 1.5), Chap. 2 (except
Sect. 2.2), Chap. 3 (except Sect. 3.3), Chap. 4, Sects. 6.1 and 6.5 of Chap. 6,
and Chap. 9. They may skip over all proofs if they believe them to be correct;
but a generation algorithm of finite automata satisfying the condition PI is
directly obtained from several proofs in the first two sections of Chap. 3.

I would like to thank Zuliang Huang for his continuous encouragement
and suggestions about the investigation on finite automata since the 1960s.
Thanks also go to Peilin Yan, the late first director of Institute of Comput-
ing Technology, Chinese Academy of Sciences, and to Kongshi Xu, the first
director of Institute of Software, Chinese Academy of Sciences, for their sup-
port and providing a suitable environment for me to do theoretical research
since the 1970s. I am also grateful to many of my colleagues and students for
various helpful discussions and valuable suggestions. My thanks go to Hongji
Wang for his careful reading and commenting on the manuscript. Naturally,
I have to take responsibility for any errors that may occur in this book. My
special thanks go to Hui Xue for her continuing thorough and helpful ed-
itorial commentary, and careful polishing the manuscript. Finally, I thank
my wife Shihua Chen and my daughter Xuemei Chen for their patience and
continuous encouragement.

Beijing, May 2007 Rengi Tao



Contents

Foreword by Arte Salomaa ............. ... .. ... .. i
Preface . ... ... e e iii
1. Imtroduction ......... ... . ... i 1
1.1 Preliminaries...........c.uuiin ittt .. 2
1.1.1 Relations and Functions. .. ............... ... ..... 2

1.1.2 Graphs. ... 5

1.2 Definitions of Finite Automata ........................... 6
1.2.1 Finite Automata as Transducers.................... 6

1.2.2 Special Finite Automata .......................... 12

1.2.3 Compound Finite Automata ....................... 14

1.2.4 Finite Automata as Recognizers .................... 16

1.3 Linear Finite Automata ............ ... ..o i, 16

1.4 Concepts on Invertibility ........... .. ... .. it 26

1.5 Error Propagation and Feedforward Invertibility............ 34

1.6 Labelled Trees as States of Finite Automata ............... 41

2. Mutual Invertibility and Search .......................... 47
2.1 Minimal Output Weight and Input Set .................... 48

2.2 Mutual Invertibility of Finite Automata ................... 54

2.3 Find Input by Search ........... ... .. .. ... ... 56
2.3.1 On Output Set and Input Tree .. ................... 56

2.3.2 Exhausting Search....... ... ... ... . ... ... ..... 67

2.3.3 Stochastic Search .............. .. ... .. ... . ... .... 74

3. R, Ry Transformation Method ........ ... ............... 77
3.1 Sufficient Conditions and Inversion ....................... 78

3.2 Generation of Finite Automata with Invertibility ........... 86

3.3 Invertibility of Quasi-Linear Finite Automata .............. 95
3.3.1 Decision Criteria . ........ ... ... 95

3.3.2 Structure Problem . ......... .. ... 100



viii

4.

Contents

Relations Between Transformations....................... 109
4.1 Relations Between R, Rp Transformations .. ............... 110
4.2 Composition of R, Ry Transformations.................... 115
4.3 Reduced Echelon Matrix ........ ... i ... 128
4.4 Canonical Diagonal Matrix Polynomial .................... 132
44.1 R, R, Transformations over Matrix Polynomial .. .... 132
4.4.2 Relations Between R, R Transformation and
Canonical Diagonal Form.......................... 136
4.4.3 Relations of Right-Parts........................... 139
4.4.4 Existence of Terminating R, R, Transformation
Sequence .. ... 144
Structure of Feedforward Inverses ........................ 153
51 A Decigion Criterion . ... .. ...ttt 154
5.2 Delay Free. ... i 157
53 OneStepDelay ........ ... i 160
54 TwoStep Delay ......... ... ... i, 165
Some Topics on Structure Problem ................... ..., 177
6.1 Some Variants of Finite Automata...................... .. 178
6.1.1 Partial Finite Automata........................... 178
6.1.2 Nondeterministic Finite Automata.................. 184
6.2 Inverses of a Finite Automaton........................... 185
6.3 Original Inverses of a Finite Automaton ................... 198
6.4 Weak Inverses of a Finite Automaton ..................... 201
6.5 Original Weak Inverses of a Finite Automaton ............. 205
6.6 Weak Inverses with Bounded Error Propagation of a Finite
Automaton ... .. ..., 208
Linear Autonomous Finite Automata ..................... 215
7.1 Binomial Coefficient ......... ... . .. ..o 216
7.2 Root Representation ............... .. ... ... ......... 224
7.3 Translation and Period .. ......... .. ... .. ... .. ... .. .... 245
7.3.1 Shift Registers ........ .. ... ... ... ... 245
7.3.2 Finite Automata .......... ... . ... .. 252
7.4 Linearization........ ... ... ... ... . ., 254
7.5 Decimation ...... ... ... .. i 265
One Key Cryptosystems and Latin Arrays................ 273
8.1 Canonical Form for Finite Automaton One Key Cryptosystems274
8.2 Latinm Arrays...... ... 279

8.2.1 Definitions ....... ... 279



Contents ix

82.2 On (n,k,r)-Latin Arrays .......................... 280
823 Invariant ....... ... . .. 284
8.2.4 Autotopism Group ............c.coiiiiiiiiiiiiaaan. 288
825 TheCasen=12,3 .. ..., 291
826 TheCasen=4, k<4 ... . . . i .. 294
8.3 Linearly Independent Latin Arrays ....................... 327
8.3.1 Latin Arrays of Invertible Functions ................ 327

8.3.2 Generation of Linearly Independent Permutations . ... 331

9. Finite Automaton Public Key Cryptosystems............. 347
9.1 Theoretical Fundamentals ............................... 348

9.2 Basic Algorithm . ........ ... . ... 351

9.3 An Example of FAPKC ........ ... ... ... ... ... ...... 356

94 OnWeak Keys . ... i i 362
9.4.1 Linear R, Ry Transformation Test.................. 362

9.4.2 On Attack by Reduced Echelon Matrix.............. 362

9.4.3 On Attack by Canonical Diagonal Matrix Polynomial 363

95 Security ..... ...t 364
9.5.1 Inversion by a General Method..................... 365

9.5.2 Inversion by Decomposing Finite Automata.......... 365

9.5.3 Chosen Plaintext Attack .......................... 366

9.5.4 Exhausting Search and Stochastic Search ............ 367

9.6 Generalized Algorithms ....... ... ... ... .. ... .. .. ..... 372
9.6.1 Some Theoretical Results.......................... 372

9.6.2 Two Algorithms.................................. 387
References. ... ... .. .. 395



1. Introduction

Renji Tao

Institute of Software, Chinese Academy of Sciences
Beijing 100080, China trj@ios.ac.cn

Summary.

Finite automata are a mathematical abstraction of discrete and digital
systems with finite “memory”. From a behavior viewpoint, such a system
is a transducer which transforms an input sequence to an output sequence
with the same length. Whenever the input sequence can be retrieved by the
output sequence (and initial internal state), the system is with invertibility
and may be used as an encoder in application to cipher or error correcting.

The invertibility theory of finite automata is dealt within the first six
chapters of this book. In the first chapter, the basic concepts on finite au-
tomata are introduced. The existence of (weak) inverse finite automata and
boundedness of delay for (weakly) invertible finite automata are proven
in Sect. 1.4, and the coincidence between feedforward invertibility and
bounded error propagation is presented in Sect. 1.5. In Sect. 1.7, we char-
acterize the structure of (weakly) invertible finite automata by means of
their state tree. In addition, there is a section that reviews some basic
results of linear finite automata, as an introduction to Chap. 7.

Key words: finite automata, invertible, weakly invertible, feedforward
invertible, inverse, weak inverse, feedforward inverse, error propagation,
state tree

Finite automata are a mathematical abstraction of discrete and digital sys-
tems with finite “memory”. From a structural viewpoint, such a system has
an input and an output as well as an “internal state”. Its time system is
discrete (say, moments 0,1,...). Only finite possible values can be taken by
the input (output and internal state, respectively) at each moment. And, the
output at the current moment and the internal state at the next moment can
be uniquely determined by the input and the internal state at the current
moment. From a behavior viewpoint, such a system is a transducer which
transforms an input sequence to an output sequence with the same length.
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Whenever the input sequence can be retrieved by the output sequence (and
the initial internal state), the system is with invertibility and may be used
as an encoder in application to cipher or error correcting.

The invertibility theory of finite automata is dealt within the first six
chapters. In the first chapter, the basic concepts on finite automata are in-
troduced. The existence of {weak) inverse finite automata and boundedness
of delay for (weakly) invertible finite automata are proven in Sect. 1.4, and
the coincidence between feedforward invertibility and bounded error propa-
gation is presented in Sect. 1.5. In Sect. 1.6, we characterize the structure of
(weakly) invertible finite automata by means of their state tree. In addition,
there is a section that reviews some basic results of linear finite automata, as
an introduction to Chap. 7.

1.1 Preliminaries

We begin with a brief excursion through some fundamental concepts. A reader
acquainted with the notation used may skip this section. We will assume a
familiarity with the most basic notions of set theory, such as membership €,
set-builder notation {---| -} or {---: .-}, empty set &, subset C, union U,
intersection N, difference \.

1.1.1 Relations and Functions

For any sets Ay, As, ..., An, the Cartesian product of Ay, Ao, ..., A, is the
set
{(al,az,...,an) l a; € A1 = 1,2,...,7L},

denoted by A; x Ay x --- x A, (sometimes (ai,as,...,an,) is replaced by
{(a1,09,...,an)). Inthecase of A; = A,i=1,2,...,n, Ay x Ay x --- x A, is
called the n-fold Cartesian product of A and is abbreviated to A™. For any
1,1 € ¢ < n, the i-th component of an element {a1,as9,...,a,) in A; x Ay x
-+ X A, means a;.

Let A and B be two sets. A relation R from A to B is a subset R of Ax B.
If (a,b) is in the relation R, it is written as aRb. If (a,b) is not in the relation
R, it is written as aRR b. In the case of A = B, R is also called a relation on
A.

A relation R on a set A is an equivalence relation, if the following condi-
tions hold: (a) R is reflexive, i.e., (a,a) € R for any a in 4; (b) R is symmetric,
i.e., {a,b) € R implies (b,a) € R for any a and b in A; and (c) R is transitive,
ie., (a,b) € Rand (b,c) € R imply (a,c) € R for any a, b and c in A.
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Let R be an equivalence relation on A. For any a in A, the set [a]g =
{b| b€ A,lab) € R} is called the equivalence class containing a. The set
{lalr | a € A} is called the eguivalence classes of R.

Let A be a set and w = {H; | ¢ € I} be a family of subsets of A. If (a)
UierH; = A and (b) H; N H; = & for any different ¢ and j in I, 7 is called a
partition of A, and H;, ¢ € I are called blocks of the partition .

Clearly, the equivalence classes of an equivalence relation on A define a
partition. Conversely, a partition {H; | i € I} of A determines an equivalence
relation R on A in the following way:

(a,b) e ReFiellae Hy &be Hy),
a,b € A

It is convenient to identify an equivalence relation with its partition.
Let R be a relation from A to B. The subset

{a € A|3be B((a,b) € R)}
of A is called the domain of R, and the subset
{b € B|3Ja€ A((a,b) € R)}

of B is called the range of R.
Suppose that R is a relation from A to B. Define a relation R~! from B
to A as follows:

(a,b) € R™' & (b,a) € R,
ac Abec B.

R~! is called the inverse relation of R. Clearly, the domain of R and the
range of R™' are the same; the domain of R~! and the range of R are the
sarme.

Let R be a relation from A to B. If, for any a in A4, any b and ¥ in B,
(a,b) € R and (a,¥') € R imply b =¥, R is called a partial function from A
to B.

A single-valued function (mapping) from A to B is a partial function R
from A to B such that the domain of R is A. A single-valued function from
a set to itself is also called a function or a transformation on the set.

Let f be a single-valued mapping or partial function from A to B. For
any ¢ in the domain of f, the unique element in B, say b, satisfying (a,b) € f
is written as f(a), and is called the value of f at (the point) a. For any a not
in the domain of f, we say that the value of f at (the point) a is undefined.
For any relation R from A to B and any a in A, we also use R(a) to denote
the set {b € B | (a,b) € R}. Clearly, R7}(b) = {a € A | (b,a) € R} =
{a€ A (a,b) € R} for any b in B.
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Let f be a single-valued mapping from A to B. If the range of f is B, f
is called a surjection, or to be surjective, or a single-valued mapping from A
onto B. If f(a) # f(a') holds for any different elements a and a’ in A, f is
called an injection, or to be injective, or to be one-to-one. If f is injective and
surjective, f is called a bijection, or to be bijective, or a one-to-one mapping
from A onto B. If there exists a one-to-one mapping from A onto B, A is
said to be one-to-one correspondent with B. A bijection from a finite set to
itself is also called a permutation on the set, or of its elements.

If f is a partial or single-valued function from A to B, the inverse relation
S~ is also called the inverse function of f. Thus f~*(b) = {a € A | (a,b) €
f}={ae A] f(a) =b}. For any b in B, whenever |f~1(b)| = 1, we also use
f71(b) to denote the unique element, say a, in f~1(b), where f(a) = b; from
the context, the reader can easily understand the meaning of the notation
without ambiguity. It is easy to see that if f is a bijection from A to B,
then f~! is a bijection from B to A and f~'(f(a)) = a for any a € A,
f(f71(b)) = b for any b € B.

An injection f from A to B is also called an invertible function, or an
invertible transformation in the case of A = Bj; a partial or single-valued
function g from B to A is called an inverse function, or an inverse transfor-
mation in the case of A = B, of f, if g(f(a)) = a holds for any a € A. For
any partial or single-valued function f; from A; to B;, i = 1,2, if Ay C Ay,
By C By and fi(a) = fy(a) for any a € As, f2 is called a restriction of f,
(on Ay). We use fi|a, to denote a restriction of f; on Ay. Clearly, if ¢ is an
inverse function of f, then the inverse function f~! of f is a restriction of
g. We also use f~! to denote an inverse function of f; from the context, the
reader can easily understand the meaning of the notation without ambiguity.

A wvector function of dimension n in s variables over F means a single-
valued function from the s-fold Cartesian product of F (respectively an
s-dimensional vector space over F') to the n-fold Cartesian product of F (re-
spectively an n-dimensional vector space over F'). For a vector function ¢ of
dimension 7 in s variables over F', its value at the point (z1, ..., z,) is usually
expressed as ¢(z1,...,%,); for any 4, 1 €< 4 < n, the i-th component function
of ¢ is a single-valued function from the s-fold Cartesian product of F (re-
spectively an s-dimensional vector space over F') to F of which the value at
each point (z1,...,z,) is the i-th component of ¢(z1,...,z,). A vector func-
tion over {0, 1} is called a Boolean vector function. A Boolean function means
a Boolean vector function of dimension 1. A Boolean function ¢(x,...,z,)
in s variables can be expressed by a polynomial of zy,...,xz,; if the degree
of the polynomial is greater than 1, ¢ is said to be nonlinear. The Boolean
function in s variables of which all values are 0 is called the zero Boolean
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function in s variables. The function on A of which the value at each a in A
equals a is called the identity function on A.

1.1.2 Graphs

We will discuss some fundamental concepts of graph. (V,I') is called a (di-
rected) graph, if I' C V x V for a nonempty set V. V is called the vertez
set, and elements in V are called vertices. I' is called the arc set or the di-
rected edge set, and elements in I” are called arcs or directed edges. For an arc
u = (a,b) € I', a is called the initial vertex of u, and b the terminal vertex
of u.

Let w = ujuz...u; ... be a finite or infinite sequence of arcs, where u; €
I'i=1,2,... If the terminal vertex of u; is the initial vertex of w;4, for any
U;, U1 i w, w is called a path of the graph (V) I'). The number of arcs in w
is called the length of the path w. The initial vertex of u; is called the initial
vertez of the path w; and the terminal vertex of u, is called the terminal
vertex of the path w if the length of the path w is n.

If w =uqug ... up 1s a path of the graph (V, I') and the terminal vertex of
the arc u,, is the initial vertex of the arc u;, the path w is called a circuit of
the graph (V, I'). Evidently, if there exists a circuit, then there exists a path
of infinite length.

For any vertex a, the set {b|(b,a) € I',b € V'} is called the incoming vertex
set of a, and the set {b|(a,b) € I,b € V} is called the outgoing vertex set of
a.

A vertex of which both the incoming vertex set and the outgoing vertex
set are empty is called an isolated vertez.

We define recurrently the levels of vertices as follows. For any vertex a in
V', if the incoming vertex set of a is empty, the level of a is defined to be 0.
For any vertex a in V, if the levels of all vertices in the incoming vertex set
of a have been defined and the maximum is h, the level of a is defined to be
h+1.

For any arc u = (a,b), if levels of a and b have been defined, the level of
the arc v is defined to be the level of the vertex a.

If the level of each vertex of (V, ') is defined and the maximum is h, we
say that the graph has level, and the level of the graph is defined to be h — 1.

Clearly, if each vertex of (V, ') is an isolated vertex, then the level of the
graph is —1.

If V is finite, the graph (V. I') is said to be finite.

Notice that for a finite graph, it has no circuit if and only if it has level,
and the maximum of its path-lengths equals its level plus 1 if it has level.
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It is convenient for some applications to introduce the empty graph. The
vertex set and the arc set of the empty graph can be regarded as the empty
set. The level of the empty graph is defined to be —2.

Two graphs (V,I') and (V’,I"") are said to be isomorphic, if there exists
a one-to-one mapping ¢ from V onto V' such that (a,b) is an arc of (V,I') if
and only if (p(a), (b)) is an arc of (V’, I'’). Any such mapping ¢ is called an
isomorphism from (V,I'} to (V',I"’). An isomorphism from a graph to itself
is called an automorphism of the graph.

A graph (V',I'") is called a subgraph of a graph (V,I'}, if V' C V and
rcr.

A graph (V,I') is called a tree with root v, if the following conditions
hold: (a) each vertex (# v) is a terminal vertex of a unique arc; (b) v is not
a terminal vertex of any arc; and (c¢) (V, I') has no circuit.

A vertex of a tree is called a leaf, if no arc emits from the vertex, i.e., the
outgoing vertex set of the vertex is empty.

Let (V,I') and (V’,I") be two trees. If (V',I"") is a subgraph of (V, I),
(V',I'") is called a subtree of (V, I).

Let G be a (directed) graph (respectively tree). If an element of some set
is assigned to each arc of G, or if an element of some set is assigned to each
arc of G and an element of some set is assigned to each vertex of G, G is
called a labelled graph (respectively labelled tree). The element assigned to an
arc (respectively a vertex) is referred to as the arc (respectively vertex) label
of the arc (respectively vertex).

1.2 Definitions of Finite Automata
1.2.1 Finite Automata as Transducers

For any set A, the concatenation of elements in A, say aga; ...a;_1, is called
a word (or a finite sequence) over A, and [ its length, where ag,ay,...,a;_1
are elements in A. In the case of I =0, apay ...a;—1 is a void sequence which
contains no element. The void sequence is called the empty word and its
length is 0. We use € to denote the empty word (void sequence), and || the
length of a word a. The set of all the words over A4 including the empty word
is denoted by A*. If ag,a1,...,an,... are elements in A, the concatenation
of the infinite elements aga; ...a, ... is called an infinite-length word or an
w-word (or an infinite sequence) over A. We use A“ to denote the set of all
infinite-length words over A. We also use A™ to denote the set of all words
over A of length n for any nonnegative integer n.

Let & = agay...am-1 and 8 = bgby...b,_1 be two words in A*. The
concatenation of a and 5 is agay ... Gm_1bgby ... bs_1, which is also a word in



