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Preface

This book focuses on the engineering of substantial bespoke systems: that is, on the
development of specialized software products for a single or limited number of clients. -
For all but the most trivial of projects, this development will be carried out jointly by a
team of engineers.

My specific objectives in writing are as follows: .

to provide a pragmatic introduction to the field of software engineering;

e to compare and contrast the three major software development strategies in
widespread use at the present time: process-oriented (‘structured’) development,
data-oriented development and object-oriented development;

e to introduce the C++ programming language, and to illustrate, through a series of
substantial case studies, the engineering of C++ programs for a broad spectrum
of software projects, from decision support systems to real-time embedded
systems;

e to demonstrate the practical benefits of computer-aided software engineering
(CASE) by including a high-quality CASE tool with the book, and making use of
this tool for all examples in the text.

Readers are assumed to be professionally interested in some aspect of software
engineering. They may, for example, be practising software engineers trained in
COBOL or FORTRAN and wishing to update their skills. They may be software engin-
eering, computer science or electronic engineering students, or lecturers on such pro-
grammes. Readers are expected to have had some previous high-level programming
experience, but no specific experience with C or C++ is assumed. Within a university
or college environment, the material may be found most suitable for intermediate-level
(second year in the UK) studeats, perhaps following a short introductory programming
course.

The material in the text has been thoroughly ‘field tested’, having formed the
basis for a number of commercial training courses which I have presented over several
years. It has also been used in my university undergraduate and postgraduate teaching,
first in the Department of Computer Science at the University of Sheffield, and more
recently in the Department of Engineering at the University of Leicester.
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. Instructor’s Guide

To make it easier for you to use Software Engineering with C++ and CASE Tools in a
university or college environment, an Instructor’s Guide, written by the author, is avail-
able from Addison-Wesley. The guide provides solutions to many of the exercises, plus
some further examples. It also contains suggesliorfs for conducting various types of
software engineering courses, and for associated practical work.

The CASE tool included with this book is produced by SELECT Software Tools.
If you wish to use the SELECT CASE toot for university or college teaching, then you
may be interested to know that SELECT Sofiware Tools offer a very substantial dis-
count on academic site licences for a full network version of the single-user CASE tool
included in this package. You can contact the company as follows:

SELECT Software Tools
Westmoreland House
80-86 Bath Road
Cheltenham
Gloucestershire GL53 7JT
UK

or,

SELECT Software Tools

Suite #84 Brookhollow Office Park
1526 Brookhollow Drive

Santa Ana

California 92705

USA

Compact disk

The code for the SELECT CASE tool itself (executable files) is included on the com-
pact disk (CD) attached inside the back cover. Details of how to install the CASE tool
are given in Appendix A. With the exception of the first study (which is concerned
solely with programming), the case studies employ this tool. All of the associated dia-
grams and files are included on the CD. Details of how to install the case study files are
given in Appendix C. ’

Copies of all the C++ programs given in the text (source files) are also included
on the CD. Except in a small number of cases (explicitly noted in the text) the programs
are written in ‘standard’ C++ (Stroustrup, 1991). The samples have been tested with a
number of compilers, including the Microsoft Visual C++ compiler (v1.0), the Borland
C++ compiler (v3.5), and the Watcom C++ compiler (v10.0). Details of how to install
the code samples are given on the CD in the file ‘README.WRI' in the directory

‘\BOOK\SOURCE'.
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Video

A video introduction to object-oriented programming based on this book will be avail-
able from the author in June 1996. Full details of the video are available on the World
Wide Web (http://www.engg.le.ac.uk/Staff/Mike Pont/index.html), by electronic mail
(soft_eng_video@sun.engg.le.ac.uk) or by post from:

Dr Michael J. Pont
Department of Engineering
University of Leicester
University Road

Leicester LE1 7RH

UK
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