Software Engineering
with

C+_+\and CASE

Tools
BHETIES C+H+F1CASE TR

Michael J. Pont

ZPLOYE s

Software
engineering
wit

Michael J. Pont

University of Leicester

4 ‘,{’- ﬁ) ¥ Ms YA «‘;)
AT Ll R

3 £ : Software Engineering with C+ + and CASE Tools
1E #*: M.].Pont

i & KETIRSC++ MICASETR

H R & HREBHEARIRAEAF

BB E: LR EepR

& 7 HREBHRAFTLFEAFCERMAKSE 1378 100010)
Fox: K32 k.31

R X 19984E3 AMIRE 1998 4E3 5% 1 PR
£ 1 . 7-5062-3628-1

R RiE: EF 01-97-2024

b4 #: 148.00 ¢

1159 B3 AR A B AL B4 B D28 Addison- Wesley Longman
Limited 422 h BR300 IR ED & 47

Preface

This book focuses on the engineering of substantial bespoke systems: that is, on the
development of specialized software products for a single or limited number of clients. -
For all but the most trivial of projects, this development will be carried out jointly by a
team of engineers.

My specific objectives in writing are as follows: .

to provide a pragmatic introduction to the field of software engineering;

e to compare and contrast the three major software development strategies in
widespread use at the present time: process-oriented (‘structured’) development,
data-oriented development and object-oriented development;

e to introduce the C++ programming language, and to illustrate, through a series of
substantial case studies, the engineering of C++ programs for a broad spectrum
of software projects, from decision support systems to real-time embedded
systems;

e to demonstrate the practical benefits of computer-aided software engineering
(CASE) by including a high-quality CASE tool with the book, and making use of
this tool for all examples in the text.

Readers are assumed to be professionally interested in some aspect of software
engineering. They may, for example, be practising software engineers trained in
COBOL or FORTRAN and wishing to update their skills. They may be software engin-
eering, computer science or electronic engineering students, or lecturers on such pro-
grammes. Readers are expected to have had some previous high-level programming
experience, but no specific experience with C or C++ is assumed. Within a university
or college environment, the material may be found most suitable for intermediate-level
(second year in the UK) studeats, perhaps following a short introductory programming
course.

The material in the text has been thoroughly ‘field tested’, having formed the
basis for a number of commercial training courses which I have presented over several
years. It has also been used in my university undergraduate and postgraduate teaching,
first in the Department of Computer Science at the University of Sheffield, and more
recently in the Department of Engineering at the University of Leicester.

viii PREFACE

. Instructor’s Guide

To make it easier for you to use Software Engineering with C++ and CASE Tools in a
university or college environment, an Instructor’s Guide, written by the author, is avail-
able from Addison-Wesley. The guide provides solutions to many of the exercises, plus
some further examples. It also contains suggesliorfs for conducting various types of
software engineering courses, and for associated practical work.

The CASE tool included with this book is produced by SELECT Software Tools.
If you wish to use the SELECT CASE toot for university or college teaching, then you
may be interested to know that SELECT Sofiware Tools offer a very substantial dis-
count on academic site licences for a full network version of the single-user CASE tool
included in this package. You can contact the company as follows:

SELECT Software Tools
Westmoreland House
80-86 Bath Road
Cheltenham
Gloucestershire GL53 7JT
UK

or,

SELECT Software Tools

Suite #84 Brookhollow Office Park
1526 Brookhollow Drive

Santa Ana

California 92705

USA

Compact disk

The code for the SELECT CASE tool itself (executable files) is included on the com-
pact disk (CD) attached inside the back cover. Details of how to install the CASE tool
are given in Appendix A. With the exception of the first study (which is concerned
solely with programming), the case studies employ this tool. All of the associated dia-
grams and files are included on the CD. Details of how to install the case study files are
given in Appendix C. ’

Copies of all the C++ programs given in the text (source files) are also included
on the CD. Except in a small number of cases (explicitly noted in the text) the programs
are written in ‘standard’ C++ (Stroustrup, 1991). The samples have been tested with a
number of compilers, including the Microsoft Visual C++ compiler (v1.0), the Borland
C++ compiler (v3.5), and the Watcom C++ compiler (v10.0). Details of how to install
the code samples are given on the CD in the file ‘README.WRI' in the directory

‘\BOOK\SOURCE'.

PREFACE ix

Video

A video introduction to object-oriented programming based on this book will be avail-
able from the author in June 1996. Full details of the video are available on the World
Wide Web (http://www.engg.le.ac.uk/Staff/Mike Pont/index.html), by electronic mail
(soft_eng_video@sun.engg.le.ac.uk) or by post from:

Dr Michael J. Pont
Department of Engineering
University of Leicester
University Road

Leicester LE1 7RH

UK

Acknowledgements

In a project such as this, one name appears on the cover, but the book only exists
because of the efforts of others behind the scenes. 1t is a pleasure, therefore, to be able
to publicly thank those who have been involved in bringing this work to fruition.

I thank all my friends and colleagues at Sheffield University and Leicester
University for many helpful discussions: Fernando Schlindwein and Derek Andrews
both deserve special mention. I thank John Fothergill both for his encouragement,
and also for enlightening me about the roots of the engineering profession. The book
wouldn’t have appeared at all without the active support of Barrie Jones, then Head of
the Department of Engineering in Leicester. Particular thanks are also due to Andrew
Norman, without whom the C++ examples in this book would include many more bugs
than they do. Pop Sharma and Andy Willby cach deserve a medal for surviving many
debugging sessions.

This book has arisen, in part, from my experiences with software development on
a number of research projects over the past ten years, mainly involving the computer
simulation of parts of the human auditory nervous system. This work would not have
been possible without the support of a great many people, among them Bob Damper,
Phil Green and John Frisby. Particular thanks are also due to my long-suffering post- -
graduate students — David Sewell, Chen Pang Wong, Kien Seng Wong and Eric Worrall
— for putting up with absence of their supervisor (in mind when not in body) during the
gestation of this text in the past 12 months. Thanks are also due to David for his help
with several of the code examples, to Kien Seng for the screen shot in Chapter 14, and
to Chen Pang and Eric for their work on the appendices.

I thank everyone — university students and those from industry and elsewhere -
who have endured my courses in programming and software engineering over recent
years, for asking tough questions and teaching me a great deal in the process. Thanks
are particularly due to Daniel Grimwade, Vasanthi Sundaramoorthy, Graham Cottle,
Noel John Bernatt, Y.K. Ng, Lee Pasifull, Stuart Urban, Tony Vickers and Daniel Yeoh
for useful comments on the evolving manuscript.

X PREFACE

I thank Emanuela Moreale for taking the trouble to provide a detailed review of
the whole of an early draft of the manuscript, and Gordon Pont and Andrew Pont for
useful comments on an even earlier draft. I thank the (anonymous) reviewers of the
evolving manuscript for many helpful suggestions.

I thank Simon Plumtree at Addison-Wesley for belicving in this large, compli-
cated project and getting it off the ground. Also at Addison-Wesley, Sheila Chatten
spent many weeks dealing patiently with my frequent email queries, and generally
keeping the book on the rails. I thank the staff at Select Software Tools: in particular,
the book could not have appeared in this form without the efforts of Virginia Bray.

I thank Bruce Springsteen for writing and recording ‘Greetings from Asbury
Park NJ°.

1 thank all the folk at Leicester Software Engineering — Jane, Stephanic and Harry
— without whom none of this would have been possible.

Last, and most of all, I thank Sarah, my partner and my best friend. After a year
which we have both shared with ‘The Book’, any sanity I have left is entirely due to her.

Michael J. Pont
Leicester; March 1996

Contents

Preface
introduction
1 Beginning at the end
1.1 What is software engineering?
1.2 Engineering quality software
1.3 But hang on a minute ...
14 A thought experiment
1.5 Quality software in the real world
1.6 An offer you can’t refuse
1.7 Why use C++?
1.8 SADIE and quality software
1.9 SADIE and CASE tools
1.10 Beginning at the end
1.11 Conclusions
2 Leicester Software Engineering
2.1 Introduction
22 LSE compamy stnucture
2.3 A typical scenario
24 A more realistic software development model
25 Three different system types
26 LSE and SADIE
2.7 Onc methodology, three different methods
28 Conclusions
Exercises
3 Goodbye, cruel world!
3.1 Introduction
3.2 - The origins of C++
33 A first C++ program
34 Variable types and declarations

vii

W ONL e W

10

11
12
14

15
15
15
16
18
19
21

xli CONTENTS

Part 1

3.5 Manipulating data: some basic operators
3.6 Input and output
3.7 More on the declaration of variables
3.8 Conclusions
Exercises
Taking control
4.1 Introduction
4.2 Some important operators
43 Iteration -
4.4 Selection statements
4.5 Advanced operators
46 Conclusions
Exercises

Process-oriented software development
Case study: Harry Hacker (Programming) Ltd

5.1 Introduction

52 The scenario

5.3 You need to use functions

54 Conclusions

Writing C++ functions

6.1 Introduction

6.2 Another look at main ()

6.3 A first simple function: Sadie()
6.4 Declaration vs definition revisited
6.5 Calling a simple function

6.6 Call by value

6.7 Local and global scope

6.8 Call by reference

69 ASIDE: Scope rules and storage class
6.10 Detecting and correcting errors
6.11 Using the const modifier

6.12 Conclusions

Exercises

Pointers and arrays

7.1 Introduction

7.2 Memory organization

7.3 Assigning values to variables
7.4 Pointers

7.5 Armays

7.6 Pointers and arrays

7.7 Strings

7.8 More advanced pointer topics
79 Conclusions

Exercises

41

50
50

51
51
51
59
73
87
89
89

91

93
93
93
97

100

101
101
101
103
103
106
107
11
117
120
127
129
132
133

135
135
135
141
143
146
150
157
167
170
171

CONTENTS xii

10

1

12

A closer look at functions 174
8.1 Introduction 174
8.2 Call by address 174
8.3 More on the const modifier 177
8.4 Arrays as function parameters 177
8.5 Returning values from functions 184
8.6 Example: On strings, constants and functions 186
8.7 Macros and inline functions 191
8.8 Recursion 194
8.9 Flexible functions 194
8.10 Conclusions 197
Exercises 199
The standard libraries 201
9.1 Introduction 201
9.2 Pragmatics 201
9.3 Character and string handling 204
94 Mathematical functions 220
9.5 Graphics functions 222
9.6 Sorting and searching 224
9.7 Time and date functions 227
9.8 Abandoning the sinking ship 228
99 Interrupts 228
9.10 Conclusions 229-
Exercises 229
The physical process model 231
10.1 Introduction 231
10.2 Structure charts 233
10.3 Process specifications 235
10.4 An alternative structure chart notation 240
10.5 Conclusions 241
Exercises 241
Implementation of the physical process model 243
11.1 Introduction 243
11.2 The recipe 243
11.3 The starting point 244
11.4 Building the system code framework 246
11.5 Creating robust functions 249
11.6 Fundamentals of testing p 256
11.7 Using driver programs 262
11.8 Field trials 265
11.9 Conclusions 266
Exercises 267
Process-oriented analysis 270
12.1 Introduction 270

122 Requirements analysis 271

xiv CONTENTS

13

14

15

16

123
12.4
12.5
12.6
12.7
12.8
12.9

The dataflow diagram
The DfD hierarchy

The process specification
The data dictionary
Balancing the system
Documentation
Conclusions

Exercises

Case study: Loughl‘;omngh Bell Foundry

13.1
13.2
133
134
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14

Introduction

Scenario

Overview of the analysis process
The business case

The Context diagram

The user interface

" The process list

The walkthrough

The Level 1 dataflow diagram
The dataflow diagram hierarchy
The process specifications

The data dictionary

The balanced logical model
Conclusions

Process-oriented analysis of interactive systems

14.1
14.2
143
144
14.5
14.6
147

Introduction

State-transition diagrams
Control processes

The impact of the user interface
Relating STDs to C++ code
Some new guidelines
Conclusions

Exercises

Process-oriented design

15.1
15.2
153
154
155
15.6
15.7
15.8

Introduction

Review and refinernent of the logical model
The software and hardware architecture
The physical process model

Review and refinement of the physical model

Reconciling the physical and logical models
The test strategy
Conclusions

Exercises

Case study: Birstall Bank

16.1
16.2

Introduction
Scenario

280
284
285
289
291
292
293
294

295
295
295
295
296
297
298
298
299
300
300
30t
302
302
303

304
306
31
317
320
322
324
324

327
327
328
337
34
350
354
356
358
358

360
360
360

CONTENTS xv

Part 1l
17

18

19

20

21

16.3 Analysis

16.4 Design

16.5 Implementation
16.6 Conclusions

Data-oriented software development

Implementing isolated data in C++
17.1 Introduction

17.2 Creating new data types with structs

17.3 Creating struct variables

17.4 Accessing elements of struct variables

17.5 unions
17.6 Creating enumerated types

177 Example: A simple payroll program

17.8 Arose by any other name ...
179 Conclusions
Exercises

Dynamic memory allocation
18.1 Introduction

18.2 Simple dynamic memory allocation

18.3 Dynamic arrays

184 More complex data structures
18.5 Conclusions

Exercises

Saving data for posterity

19.1 Introduction

19.2 File access fundamentals
19.3 Opening and closing files
19.4 Sequential file access
19.5 Direct file access

19.6 Conclusions

Exercises

The relational database
20.1 Introduction

20.2 Fundamentals of database systems
20.3 Why use a relational data model?

20.4 Data normalization issues
20.5 Relationships between tables
20.6 Implementation of RDBs
20.7 Other types of database

20.8 Conclusions

Exercises

Entity-relationship diagrams
21.1 Introduction

360
381
385
423

425

427
427
429
430
431
433
434
437
441
441
442

443
443
444
447
448
456
456

459
459
459
462
464
468
474
474

476
476
477
477
480
487
491
496
497
497

500
500

xvi CONTENTS

22

23

Part HI
24

25

21.2 Modeliing general associations
21.3 Using attribute diagrams

21.4 How to create ERDs

21.5 Implementating from ERDs
21.6 Aggregation relationships

21.7 Conclusions

Exercises

Data-oriented analysis and design

22.1 Introduction

22.2 The analysis phase

22.3 Integration of process and data models

22.4 Decision support systems

22.5 The design phase

22.6 Data normalization and speed of data access
22.7 The implementation phase

22.8 Conclusions

Exercises-

Case study: Laughing House

23.1
232
233
23.4
235
236
23.7

Introduction
Scenario
Analysis

Press cutting
Design
Implementation
Congclusions

Object-oriented software development

Why we need objects

24.1 Introduction

24.2 A thought experiment revisited
24.3 Encapsulation

24.4 Polymorphism

24.5 Inheritance

24.6 Classes for courses

24.7 Conclusions

Exercises

Encapsulation

25.1 Introduction

25.2 Constructor functions

25.3 Being destructive

25.4 Functions, objects and copies
25.5 Copy constructors

256 Example: A new array type
25.7 Dealing with errors

500
504
505
506
512
515
515

518
518
519
521
523
524
525
526
527
527

531
531
531
532
544
545
550
586

587

589
589
590
592
600
605
608

610

611
611
611
617
619
624
628
638

CONTENTS xvi

27

28

29

25.8 Guidelines
259 Conclusions
Exercises

A first look at class relationships

26.1 Introduction

26.2 Aggregations (APO relationships)
26.3 Associations (NTKA relationships)
26.4 Relationships between objects

26.5 Conclusions

Exercises

Polymorphism

27.1 Introduction

27.2 The this pointer

27.3 Ovérloading binary operators

27.4 Copy constructors vs assignment

27.5 Overloading unary operators

27.6 Using friend functions for operator overloading
27.7 Guidelines

27.8 Conclusions

Exercises

Generic programming
28.1 Introduction

28.2 Generic functions
28.3 Generic classes
28.4 Guidelines

28.5 Conclusions
Exercises

Inheritance

29.1 Introduction

29.2 Single inheritance

29.3 Mutltiple inheritance

29.4 Virtual functions, pointers and polymorphism
29.5 Pure virtual functions

29.6 Guidelines

29.7 Conclusions

Exercises

Class-relationship diagrams

30.1 Introduction

30.2 Entities vs classes

30.3 Class-relationship diagrams
30.4 Identifying appropriate classes
30.5 Conclusions

Exercises

645
645
645

648
648
648
652
657

661

662
662
663
665
674
676
681
686
687
687

688
688
693
700
700
700

701
701
701
713
718
724
726
727
728

729
729
729
730
734
737
737

xvill CONTENTS

)|

32

Conclusions

33

34

Appendices

ST OATIMOOW >

Index

Object-oriented SADIE

31.1 Introduction

31.2 Why CRDs are not enough

31.3 Building the object model

31.4 The components of the object model
31.5 Implementing the object model

31.6 Testing object-oriented systems

31.7 Arecipe for success

31.8 Conclusions

319 Appendix: Source code for mailing list
Exercises

Case study: Birstall Bank revisited

32.1 Introduction

32.2 Scenario

323 Developing the object modei

324 Implementation of the class model
32.5 Conclusions

Ending at the beginning

33.1 Introduction

33.2 - Which method should you use?
33.3 Varying and mixing the recipes
33.4 Conclusions

Bibliography

CASE tool: Installation

CASE tool: Managing a project

CASE tool: Installing the sample projects
CASE tutorial: General introduction
CASE tutorial: Dataflow diagrams

CASE 1tutorial: Data dictionary

CASE tutorial: Process specifications
CASE tutorial: State transition diagrams
CASE tutorial: Structure charts

CASE tutorial: Entity-relationship diagrams and
class-relationship diagrams

738
738
738
739
740
746
753
754
755
756
765

767
767
767
768
781
829

831

833
833
833
835
835

841
843
849
864
866
903
920
931
934
947

952

959

Introduction

