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PREFACE TO FIRST EDITION

This book was planned and begun in 1929. Our original inten-
tion was that it should be one of the Cambridge Tracts, but it
soon became plain that a tract would be much too short for our
purpose.

Our objects in writing the book are explained sufficiently in
the introductory chapter, but we add a note here about history
and bibliography. Historical and bibliographical questions are
particularly troublesome in & subject like this, which has applica-
tions in every part of mathematics but has never been developed
systematically.

It is often really difficult to trace the origin of a familiar
inequality. It is quite likely to occur first as an auxiliary
proposition, often without explicit statement, in a memoir on
geometry or astronomy; it may have been rediscovered, many
years later, by half a dozen different authors; and no accessible
statement of it may be quite complete. We have almost always
found, even with the most famous inequalities, that we have
a little new to add.

We have done our best to be accurate and have given all
references we can, but we have never undertaken systematic
bibliographical research. We follow the common practice, when
a particular inequality is habitually associated with a particular
mathematician’s name; we speak of the inequalities of Schwarz,
Holder, and Jensen, though all these inequalities can be traced
further back; and we do not enumerate explicitly all the minor
additions which are necessary for absolute completeness.

We have received a great deal of assistance from friends.
Messrs G. A. Bliss, L. S. Bosanquet, R. Courant, B. Jessen,
V. Levin, R. Rado, I. Schur, L. C. Young, and A. Zygmund
have all helped us with criticisms or original contributions.
Dr Bosanquet, Dr Jessen, and Prof. Zygmund have read the
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proofs, and corrected many inaccuracies. In particular, Chap-
ter 111 has been very largely rewritten as the result of Dr Jessen’s
suggestions. We hope that the book may now be reasonably
free from error, in spite of the mass of detail which it contains.

Dr Levin composed the bibliography. This contains all the
books and memoirs which are referred to in the text, directly

or by implication, but does not go beyond them. G.H.H
J.E. L.
G.P.
Cambridge and Ziirich
July 1934

PREFACE TO SECOND EDITION

The text of the first edition is reprinted with a few minor cha,nges;
three appendices are added.

J.E. L.

G.P.
Cambridge and Stanford

March 1951
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CHAPTER I
INTRODUCTION

1.1. Finite, infinite, and integral inequalities. It will be
convenient to take some particular and typical inequality as a
text for the general remarks which occupy this chapter; and we
select a remarkable theorem due to Cauchy and usually known
as ‘ Cauchy’s inequality’.

Cauchy’s inequality (Theorem 7) is

(1.1.1)  (a,b,+ayby+... +a,b,)?
S(a2+a2+... +a,2) (b 2+ b2+ ... +b,2)
or

n n
(1.1.2) (Za,b,)? < $a,2Tb,2,
1 1 1

and is true for all real values of a,, a,, ..., @,, by, by, ..., b,. We
calla,, ..., by, ... the variables of the inequality. Here the number
of variables is finite, and the inequality states a relation between
certain finite sums. We call such an inequality an elementary or
finite inequality.

The most fundamental inequalities are finite, but we shall also
be concerned with inequalities which are not finite and involve
generalisations of the notion of a sum. The most important of such
generalisations are the infinite sums

(1.1.3) §a,, E a,
1

—<®©

and the integral _
b 3
(1.1.4) f F(z)de

(where a and b may be finite or infinite). The analogues of (1.1.2)
corresponding to these generalisations are

(1.1.5) ("Zula,,,b,,)2 s Ea,z ;.O'.b,s
1 11
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(or the similar formula in which both limits of summation are
infinite), and

b 2 b b
(1.1.6) (f f(x)g(x)dz} §f fz(x)dxf g?(x)dzx.
We call (1.1.5) an infinite, and (1.1.6) an integral, inequality.

1.2. Notations. We have often to distinguish between dif-
ferent sets of the variables. Thus in (1.1.2) we distinguish the
two sets a,, a,, ..., @, and by, by, ..., b,. Itis convenient to have
a shorter notation for sets of variables, and often, instead of
writing ‘the set a@,, a5, ..., a,” we shall write ‘the set (a)’ or
simply ‘the a’.

We shall habitually drop suffixes and limits in summations,
when there is no risk of ambiguity. Thus we shall write

Ja

n @ 0
for any of Za,, Xa,, 2 a,;
1 1 —®©

so that, for example,
(1.2.1) (Zab)? < Za?Zb?
may mean either of (1.1.2) or (1.1.5), according to the context.
In integral inequalities, the set is replaced by a function; thus
in passing from (1.1.2) to (1.1.6), (a) and (b) are replaced by
fand g. We shall also often omit variables and limits in integrals,

writing . [ fd=
for (1.1.4): so that (1.1.6), for example, will be written as
(1.2.2) (f fgduy <J f2dz [grde.

The ranges of the variables, whether in sums or integrals, are pre-
scribed at the beginnings of chapters or sections, or may be
inferred unambiguously from the context.

1.3. Positive inequalities. We are interested primarily in
‘positive’ inequalities®. A finite or infinite inequality is positive if
all variables a, b, ... involved in it are real and non-negative.
An inequality of this type usually carries with it, as a trivial

8 There are exceptions, as for example in §§ 8.8-8.17. There the ‘positive’ cases of
the theorems discussed are relatively trivial.
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corollary,an apparently more general inequality valid for all real,
or even complex, a, b, .... Thus from (1.1.2) and the inequality

(1.3.1) [Zu|sZ|ul,
valid for all real or complex u, we deduce

(132)  |Zab|*s(Z|af|6|) ST al*2]b]3
wheretheaandb are arbitrary complex numbers. Weshall usually
be content to state our theorems in the fundamental ‘positive’
form and to leave the derived results to the reader. Occasionally,
however, when the inequality in question is very important, we
state it explicitly in its most general form.

Similar remarks apply to integral inequalities. The independent
variable z will be real, but will (like the variable of summation )
take either positive or negative values; while the functions f(z),
g(z), ... will generally assume non-negative values only. To such
an inequality as (1.1.8), true for non-negative f, g, corresponds
the more general inequality

(13.3) |(fodz|*s[|f|2dzf | g |2dz,

valid for arbitrary complex functions f, g of the real variable .
Numbers k, I, 7, 8, ... occurring as indices in our theorems are
real but in general capable of either sign.

1.4. Homogeneous inequalities. The two sides of (1.1.2)
are homogeneous functions of degree 2 of the a and also of the b;
and generally both sides of our inequalities will be homogeneous
functions, of the same degree, of certain sets of variables. Since
homogeneous functions of positive degree vanish when all their
arguments vanish, both sides, if of positive degree, will vanish,
and so be equal, when the sets concerned consist entirely of 0’s.
Thus (1.1.2) reduces to an equality if all the g, or all the b, are 0.

A set consisting entirely of 0’s is called a null set, or the null set,
if the context is unambiguous. In general the ‘<’ or ‘2’ of our
theorems will reduce to ‘="’ when one or all of the sets involved is
null. Sometimes this will be the only case of equality. More usually
there will be other cases; thus plainly ‘=" occursin (1.1.2) if every
a is equal to the corresponding b. We shall be careful, wherever it
is possible, to pick out explicitly such cases of equality.
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The homogeneity of an inequality in certain sets of variables
often enables us to simplify our proofs by imposing an additional
restriction (& normalisation) on them. Thus the means M, (a) of
§ 2.2 are homogeneous, of degree 0, in the weights p, and we may
always suppose, if we please, that Xp =1. Again, if we wish to
prove that

(1.4.1)  (af+af+...+a,5)*<(a) +a, +... +a,")r
when 0 <7 < 8 (Theorcm 19), we may suppose (since both sides are
homogeneous in the a of degree 1) that Za”=1. We have then

a < 1, aj’= (avr)s/r < avr’
and so Za® £ Za’ = 1. Without this preliminary normalisation, our
proof would run

el () o)

There is another sense of ‘homogeneity’ which is sometimes
important. Let us compare (1.4.1) above, which may be written as

(1.4.2) (Za®)Vs < (Zam)vr,
with (1.1.2). Both inequalities are homogeneous in the variables,
but (1.1.2) has a further homogeneity which (1.4.2) has not. It is,
as we may say, ‘homogeneous in X’; X, if treated as a number,
would occur to the same power on the two sides of the inequality.

The result of this homogeneity in % is that (1.1.2) remains
true if every sum which occurs is replaced by the corresponding
mean, i.e. if written in the form

(71; Zab)2 < (}z zaz) (;IL Zbe) .

The importance of this kind of homogeneity will appear very
clearly in §2.10 and §6.4. Roughly, an inequality which possesses
it has an integral analogue, while one which does not, like (1.4.2),
has none.

1.5. The axiomatic basis of algebraic inequalities?, Qur
subject is difficult to define precisely, but belongs partly to
‘algebra’ and partly to ‘analysis’. Algebra or analysis, like
geometry, may be treated axiomatically. Instead of saying, as

See Artin and Schreier (1).
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for example in Dedekind’s theory of real numbers, that we are
concerned with such or such definite objects, we may say, as in
projective geometry, that we are concerned with any system of
objects which possesses certain properties specified in a set of
axioms. We do not propose to consider the ‘axiomatics’ of
different parts of the subject in detail, but it may be worth while
to insert a few remarks concerning the axiomatie basis of those
theorems which, like (1.1.2) and most of the theorems of Ch. II,
belong properly to algebra.

We may take as the axioms of an algebra only the ordinary
laws of addition and multiplication. All our theorems will then
be true in many different fields, in real algebra, complex algebra,
or the arithmetic of residues to any modulus. Or we may add
axioms concerning the solubility of linear equations, axioms
which secure the existence and uniqueness of difference and
quotient. Our theorems will then be true in real or complex
algebra or in arithmetic to a prime modulus.

In our present subject we are concerned with relations of in-
equality, a notion peculiar to real algebra. We can secure an
axiomatic basis for theorems of inequality by taking, in addition
to the ‘indefinables’ and axioms already referred to, one new
indefinable and two new axioms. We take as indefinable the idea
of a positive number, and as axioms the two propositions:

1. Either a is 0 or a is positive or —a 18 positive, and these
possibilities are exclusive.

I1. The sum and product of two positive numbers are positive.
We say that a is negative if —a.is positive, and that a is greater
(less) than b if a—b is positive (negative). Any inequality of a
purely algebraic type, such as (1.1.2), may be made to rest on
this foundation.

1.6. Comparable functions. We may say that the functions

f@)=f(a,,a5,....,0,), 9(2)=9(a1,04,...,0p)
are comparable if there is an inequality between them valid for

all non-negative real a, that is to say if either f < g for allsuch a or
HI1
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fzg for all such a. Two given functions are not usually compar-
able. Thus two positive homogeneous polynomials of different
degrees are certainly not comparable; if 0<f<g for all non-
negative a, and both sides are homogeneous, then f and g are
certainly of the same degree.

The definition may naturally be extended to functions
fla,b,...) of several sets of variables.

We shall be occupied throughout this volume with problems
concerning the comparability of functions. Thus the arithmetic
and geometric means of the a are comparable: @ (a)=<U(a)
(Theorem 9). The functions & (a+b) and @ (a)+ @ (b) are com-
parable (Theorem 10). The functions A (ab) and A (a) A (b) are not
comparable; their relative magnitude depends upon the relations
of magnitude of the a and b (Theorem 43). The functions

Y1 (Zpf(a)), x7*(Zpx(a)
are comparable if and only if xf~! is convex or concave
(Theorem 85). '
An important general theorem concerning the comparability of
two functions of the form

Za2a*r...a,%,
due to Muirhead, will be found in §2.18.

1.7. Selection of proofs. The methods of proof which we use
in different parts of the book will depend on very different sets of
ideas, and we shall often, particularly in Ch. II, give a number of
alternative proofs of the same theorem. It may be useful to call
attention here to certain broad distinctions between the methods
which we employ.

In the first place, many of the proofs of Ch. II are ‘strictly
elementary’, since they depend solely on the ideas and processes
of finite algebra. We have made it a principle to give at any rate
one such proof of any really important theorem whose character
permits it.

Next we have, even in Ch. II, many proofs which are not
elementary in this sense because they involve considerations of

s Compare § 2.19.



