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PREFACE

This volume has a threefold purpnse: to explain the physical concepts of
quantum mechanics, to describe the mathematical formalism, and to
present illustrative examples of both the ideas and the methods. The
book is intended to serve as a text at the graduate level and slso as a
reference book. It is assumed that the reader is reasonably familiar with
classical mechanics, electromagnetic theory, atomic structure, and dif-
ferential equations; prior acquaintance with matrices or group theory is
not necessary. In addition, he should have had some contact with com-
plex variables (for Chap 9) and thc special theory of relativity (for -
Chap. 13).

The author believes that the analytical methods employed in the
book will satisfy most theoretical physicists even though no attempt is
‘made to achieve mathematical rigor. For example, there is little or no
discussion of the justification for the interchange of sum, derivative, and
ir tegral operations or for the use of the & function. On the other hand,
the physical reasons for the nature of the results obtamed are investigated
whereyer possible.

Problems are given at the end of each chapter They are often used
to illustrate or amplify points discussed in the text. Original theoretical
papers. are referred to throughout the book; the list is representative”
rather than exhaustive.- Expenmenta.l results are, for the most part,
quoteéd without reference, since the large amount of documentation
required for an adequate survey seems out of place in a book on theoretical
physics. Several other books and review articles on quantum mechanics
and related subjects are referred to for miore detailed dxscussxons of
particular topics.

The scope of this volume is best outlined if the book is divided into

ix
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three parts. The first three chapters constitute an introduction to
quantum mechanics, in which the physical concepts are discussed and the
Schrodinger wave formalism is established. The next nine chapters
present exact solutions of the wave equation for both bound-state and
collision problems, the Heisenberg matrix formalism and transformation

- theory, symmetry, approximation methods, the scattering matrix, particle
identity, radiation theory, and some applications to atomic systems.
Since Chaps. 5 to 12 include most of the material .given in a first-year
graduate course, it seems desirable to include a semiclassical treatment of
electromagnetic radiation (Chap. 11) even though some of the results are
obtained again in Chap. 14. The last two chapters are an introduction to
relativistic particle theory and to quantized fields.

The first edition of this book was completed 20 years ago, and
relatively few changes were made in the second edition. Thus the present
revision is of necessity extensive; at the same time it is intended to retain
the comprehensiveness of the original volume without a substantial
increase in length. The principal additions are a section on complex
potentials and the reciprocity and optical theorems (Sec. 20); a much
fuller aceount of matrices and transformation theory (Chap. 6); a new
chapter that discusses geometrical and dynamical symmetries and
includes a fairly detailed account of angular momentum’ (Chap. 7); a
considerably expanded treatment of approximation methods for bound-
state and collision problems, including the scattering matrix and its

applications, analytic properties, and dispersion relations (Chaps.8 and 9);

and a new section on the density operator and matrix (Sec. 42). The
principal topics dropped from the second edition are the variational treat~
ment of scattering, the theory of the Cerenkov effect, and the quantiza-
* tion of the Dirac equation; also, the last two sections of the second edition
are somewhat condensed and combined into one (Sec. 57) in the present
volume. Some changes in notation have been made to conform to cur-
rent usage, and a table of the numerical values of some physical quantities
has been added inside the back cover. .

The author wishes again to record his indebtedness to the late
Prof. J. R. Oppenheimer and to Prof. Robert Serber in connection with
the preparation of the first edition of this book. He is alsoe grateful to
several of those who have studied and taught from the earlier revision for

their many helpful suggestxons In particular, Prof. E. H. Wichmann

" prepared a thorough review of the second edition that contributed sub-

stantially to the present volume. The author also thanks the many
students who studied from the various drafts of the third edition for their
comments, and especially Prof. J. D. Walecka for his constructive criti-
cism of particular sections. : ‘

‘ : Leonard I. Schiff



CONTENTS

Preface

Chapter1  The Physical Basis of Quantum Mechanics

1

Experimental Background ) i

Inadequacy of classical physics. Summary of principal experiments
and inferences. . o
The Old Quantum Theory '
Bohr-Sommerfeld quantisation rules. Practical difficulties. Con-
ceptual difficulties. Quantum-mechanical viewpoint.

Uncertainty and Complementarity

Uncertainty principle. Complementarity principie. Limitations

on experiment.
Discussion of Measurement
Localization experiment. Momentum determination experiment.

Analysis of diffraction experiment. Discussion of diffraction

experiment. ‘
Wave Packets in Space and Time 7
Space packets. Time packets. Wave formalism.

Chapter 2 B The Séhr&dinger Wave Equation

6

Development of the Wave Equation _ -
Traveling harmonic waves. Need for a wave equation. The one-

14

19
20



xil

CONTENTS

dimensional wave equation. Extension to three dimensions.
Inclusion of forces. )

Interpretation of the Wave Function

Statistical interpretation. Normalization of . Probability current
density. Expectation value. Ehrenfest’s theorem.

Energy Eigenfunctions

Separation of the wave equation. Significance of the separation
constant E. Boundary conditions at great distances. Continuity
conditions. Boundary conditions for infinite potential energy.
Energy eigenvalues in one dimension. Discrete energy levels.
Continuous energy eigenvalues. Discrete and continuous eigen-
values in three dimensions.

One-dimensional Square Well Potential

Perfectly rigid walls. Finite potential step. Energy levels.
Parity. A simplified solution.

Chapter 3  Eigenfunctions and Eigenvalues

10

11

12

Interpretative Postulates and Energy Elgenfunctlons

Dynamical variables as operators. Expansion in eigenfunctions.
The total-energy operator. Normalization in a box. Orthonor-
mality of energy eigenfunctions. Reality of the energy eigenvalues.
Expansion in energy eigenfunctions. " The closure property. Proba-
bility function and expectation value. General solution of the
Schrédinger equation.

Momentum Eigenfunctions

Form of the eigenfunctions. Box normalization. The Dirac 3 func-

tion. A representation of the & function. Normalization in terms
of the § funetion. ‘Some properties of the § function. ~Closure.
Expansion in momentum eigenfunctions. Probability function and
expectation value. ’ . o =

Motion of a Free Wave Packet in One Dlmension

The minimum uricertainty product. Form of the xmmmum packet

Momentum expansion coeflicients. Chzmge mtb- time of & minimum
packet. -Classical limit. : )

Chapter 4  Discrete Eigenvalues: Bound Shhs

13

14

15

Linear Harmonic Osclllator

Asymiptotic behavior. Energy levels. Zero-point energy. Hermite

polynomials. Harmonic-oscillator wave functions. Correspondence
with classical theory. Oscxllatmg wave packet.. )
Spherically Symmetnc Potentials in Three Dimensions

Separation of the wave equation. Legendre polynommls. Sphencal

harmonics. Parity. Angular mémentutn.
Three-dimensional Square Weli Potential

Zero angular momentum. Intétior solutions for arbxtrary l E_i‘:'-,{

terior solutions for arbitrary I. Energy levels.

24

37

45
46

-53

60

76



CONTENTS

16

The Hydrogen Atom _

Reduced mass. Asymptotic behavior. Energy levels. Laguerre
polynomials. Hydrogen-atom wave functions. Degeneracy. Sepa-
ration in parabolic coordinates. Energy levels. Wave functions.

Chapter5 Continuous Eigenvalues: Collision Theory

17

18

19

20

21

One-dimensional Square Potential Barrier

Asymptotic  behavior. -~Normalization. Scattering ‘coefficients.
Scattering of a wave packet.

Collisions in Three Dimensions

Scattering cross seetion. Relations between angles in the laboratory
and center-of-mass systems. Relation between cross .sections.
Dependence on . Asymptotic behavior. Normalization.
Scattering by Spherically Symmetric Potentials

Asymptotic behavior. Differentia] cross section. Total elastic cross
seetion. . Phase shifts. Calculation of §;. Relation between signgof

'8, and V(r). Ramsauer-Townsend effect. Scattering by a per-

fectly rigid sphere Scattering by a square well potential. Reso-
nance seattenng Angular distribution at low energies.

Scattering by Complex.Potentials

Conservation of probability. Complex phase shifts. Asymptotic
relations. Reciprocity theorem. Generalized optical theorem.

- Optical theorem.
_Scattering by a Coulomb Field

‘Parabolic coordinates. Confluent hvpergeometnc function. . Scat-
tering cross section "and normalization. Solution in sphenca.l
coordinates. Modxﬁed eoulomb field. Classical limit for a pure
couloinb field. '

Chapter 6 Matrix Formulation of Quantum Mechamcs

22

23

24

Matrix, Algebra ,
Matrix - addition. and multiplication. - Null, umt and: cons!;ant

matrices. Trace, determinant, and inverse of a matrix. Hermitian -

and unitary matrices. Transformation and dmgonahzatwn of
mairices., Funetions of matrices. Matriees of infinite rank.
Transformation Theory,

Unitary matrix W. Transformation of the haxmltoman mth w.
Transformation of the hamiltonian with U. Transformation of the

‘hamiltonian with:: Vo Representations’ of - opera.tors A usefalouT

identity. Row and column matrices.. Hilbert space. - Dirac’s bra
and ket notation. Pro;ectnon operators Physwal meanmg of
matrix elements. ) . .

Equationsquotron _ . I ‘ '
Sehr&ﬁnger ploture Hexsen,berg plcture Intera.ctxon plcture
Energy representa.tlon Clnssxcal Iagmngmn ‘and hamxlbonmn

equatxons of motion. Poisson brackets and commutator brackets.

83

100
101

105

116

129

138

148

149 -

.155

167



xiv

25

CONTENTS

Quantization of a classical system. Motion of a particle in an elec-
tromagnetic field. Evaluation of commutator brackets Velocity
and acceleration of a charged particle. The Lorentz force. Virial
theorem. ]
Matrix Theory of the Harmonic Oscillator
Energy representation. Raising and lowering operators. Matrices

" for a, z, and p. Coordinate representation.

Chapter7 Symmetry in Quantum Mechanics

26

27

Space and Time Displacements _

Unitary displacement operator. Equation of motion. Symmetry
and degeneracy. Matrix elements for displaced states. The group
concept. Time displacement.

Rotation, Angular Momentum, and Umtary Groups

Proper rotation group. Geometrical isomorphism. Infinitesimal
rotations. Spin of a vector particle. Commutation relations for the
generators. Choice of a representation. Values of m, f(j), and \a.
Angular momentum matrices. Connection with spherical har-
monics. *Spin angular momentum. Covering group. Unitary and

" special unitary groups in two dimensions. The groups U(nj and

SU(n). Generators of U(n) and SU(n). The SU(3) group.
Representation in terms of coordinates and momenta.

Combination of Angular Momentum States and Tensor Operators
Eigenvalues of the total angular momentum. Clebsch-Gordan
coeflicients. Recursion relations. Construction procedure. Some
particular coefficients. Matrix elements for rotated states. Ir-
reducible tensor operators. -Produet of tensor operators. Com-
bination of operator and eigenstate. Wigner-Eckart theorem.
Space Inversion and Time Reversal

-Space inversion. Unitary inversion operator. Intrinsie parity.

Inverted states and operators. Time reversal. Antilinear operators.
Antiunitary operators. T for a zero spin particle. T for.a nonsero
spin particle. System of several "part.icles.“ ‘Reality of eigen-

" functions.

Dynamical Symmetry
Classical Kepler problem. Hydrogen atom. The 0(4) group.

_Energy levels of hydrogen. ~Classical isotropic oscillator. . Quantum

isotropic oscillator.

-

Chapter 8 Approximation Methods for Bound States

31

Stationary Perturbation Theory

Nondegenerate case. First-order perturbatlon Second-order per-
turbation. Perturbation of an oscillator. Degenerate case. Re-
moval of degeneracy in second order. Zeeman effect without
electron spin. First-order Stark effect in hydrogen. ~Perturbed
energy levels. Occurrence of permanent electric dipole moments.

180

187
188

194

212

224

234

244
245



CONTENTS

32

33

35

The Variation Method

Expectation value of the energy. Application to excited states.
Ground state of helium. Electron interaction energy. Variation of

255

the parameter Z. van der Waals interaction. Perturbstion caleu--

lation. Variation calculation. .

Alternative Treatment of the Perturbation Series

Second-order Stark effect in hydrogen. Polarizability of hydrogen.
Method of Dalgarno and Lewis. Third-order pertarbed energy.
Interaction of a hydrogen atom and a point charge.

The WKB Approximation

Classical limit. Approximate solutions. Asymptotic nature of the
solutions. Solution near a turning point. Linear turning point.
Connection at the turning point. - Asymptotic connection formulas.
Energy levels of a potential well. A quantization rule. Special
boundary conditions. Tunneling through a barrier.

Methods for Time-dependent Problems

. Time-dependent perturbation theory. Interaction picture. First-
order perturbation. Harmonic perturbation. Transition proba-
bility. Ionization of a hydrogen atom. Density of final states. -

Ionization probability. Second-order perturbation. Adiabatic ap-
proximation. Choice of phases. Connection with perturbation
theory. Discontinuous change in H. Sudden approximation.
Disturbance of an oscillator.

Chapter 9 Approximation Methods in Collision Theory

36

37

The Scattering Matrix

Green’s functions and propagator. Free-particle Green’s functions.
Integral equation for y. - Integral equation for the propagator. Use
of the advanced Green’s function. Differential equation for the
Green’s functions. Symbolic relations. Application to scattering.
Unitarity of the S matrix. Symmetry properties of the S matrix.
Stationary Collision Theory

Transition matrix. Transition probability. Scattering cross sec-
tion. Green’s functions for stationary case. Green’s functions as
inverse operators. Stationary propagator. Free-particle propaga-

~ tor. Scattering amplitude. ' Ingoing waves. S matrix for station-

ary case. Angular momentum representa.tnon

Approximate Calculations

Born approximation. Validity of the Born approximation. Scat-
tering from two potentials. Distorted wave Born approximation.
Partial wave analysis of the DWBA. Approximate expression for
the phase shifts. Scatterer with internal degrees of freedom.
Elastic and inelastic cross sections. Electron - scattering from
hydrogen. 'Production of a cloud chamber track. Second-order
perturbation theory. Evaluation of the second-order matrix

263

279

298
298

312

34



xvi

39

CONTENTS

element. Discussion of the cross section. Eikonal approximation.

Scattering amplitude and. cross section. Perfect absorber.
Analytic Properties and Dispersion Relations

‘Radial solutions. Jost function. Enhancement factor. Jost func-
‘tion for large |k]. Bound.states. Dispersion relations for the Jost

function. Dispersion relation for In fi(k). Effect of bound states.
Levinson’s theorem. Effective range. Forward scattering ampli-
tude. Dispersion relation for T(E). Subtracted dispersion relation.

Chapter 10  ldentical Particles and Spip

40

41

a2

43

ldentical Particles

Physical meaning of identity. Symmetric and antisymmetric wave
functions. Construction from unsymmetrized functions. The sym-
metric group. Distinguishability of identical particles. The
exclusion principle. Connection with statistical mechanics. Colli-
sions of identical particles. \
Spin Angular Momentum :

Connection between spin and statistics. Spin matrices and eigen-
functions. Collisions of identical particles. Electron spin functions.

.The helium atom. Spin functions for three electrons.

Density Operator and Density Matrix

Expectation value and projection operator. Density op’erat,or
Equations of motion. Prmectnon operator for a spin 3 particle.
Density matrix for a spin 7 particle. Pdlarization vector for a spm 8
particle. Precession of the polarization vector.

Rearrangement Collisions *

Notation for rearrangement collisions. Alternative expression for
the T matrix element. T matrix element for rearrangements.
Presence of a core interaction. Elimination of the core term.
Exchange collisions of electrons with hydrogen. Relation between
amplitude and matrix element. Effects of identity and spin.
Exchange collisions with helium. '

Chapter 11 Semiclassical Treatmeuit of Radiation

4

Absorption and Induced Emission
Maxwell’s equations. Plane electromagnetic waves. - Use of pertur-
bation theory. Transition probability. Interpretation in terms of

absorption and emission. Electric dipole transitions. Forbidden
transitions. .

Spontaneous Emission
Classical radiation field. Asymptotic form. Radiated energy.
Dipole radiation. Angular momentum. Dipole case. Conversion

from classical to quantum theory. Planck distribution formula.
Line breadth.

/4

362
363

in

378

384

397
398

406



CONTENTS

Some Applications of Radiation Theory
Selection rules for a single particle. Polarization of emitted radia-

- tion. Conservation of angular momentum. Selection rules for

many-particle systems. Photoelectric effect. Angular distribution.
Cross section for the atomic photoelectric effect. Improvement on
the Born approximation.

Chapter 12  Atoms, Molecules, and Atomic Nuclei

47

49

Approximations in Atomic Structure

Central-field approximation. Periodic system of the elements.
Thomas-Fermi statistical model. Evaluation of the potential.
Hartree’s self-consistent fields. Connection. with the variation
method. Corrections to the central-field approximation. LS coupl-
ing scheme, Selection rules. jj coupling scheme.

The Alkali Atoms .

Doublet separation. Doublet intensity. 'Effect of a magnetic field.
Weak-field case. Strong-ﬁeld case. Quadratic Zeeman effect.
Molegules '
Classification of energy levels. Wave equation. The hydrogen
molecule. Potential-energy function. The Morse potential. Rota-
tion and vibration of diatomic molecules. Energy levels. Effect of
nuclear identity.

Atomic Nuclei

General properties of nuclei. Two-nucleon interaction. Neutron-
proton system. Arbitrary shape of potential. Relations for the
phase shift. Effective range. Exchange operators. Proton-proton
scattering. .

Chapter 13 Relativistic Wave 'gquations

51

52

53

Schrodinger’s Relativistic Equation

Free particle. Electromagnetic potentials. Separation of the
equation. Energy levels in a coulomb field. :
Dirac’s Relativistic Equation

Free-particle equation.” Matrices for « and B. ‘Free-particle solu-
tions, Charge and current densities. Electromagnetic potentials.
Dirac's Equation for a Central Field

Spin angular momentum. Approximate reduction; spin-orbit
energy. Separation of the equation. The hydrogen atom. Classi-
fication of energy levels. Negative energy states.

Chapter 14  The Quantization of Wave Fields

54

Classical and Quantum Field Equations’
Coordinates of the field. Time derivatives. Classical lagrangian
equation. Functional derivative. Classical hamiltonian equations.

416

424
424

436

445

455

467

472

480

490
491



xviii

55

57

CONTENTS

Quantum equations for the field. Fields with more than one com-
ponent, Complex field.

Quantization of the Nonrelativistic Schrodmger Equation
Classical lagrangian and hamiltonian equations. Quantum equa-
tions. The N representation. Creation, destruction, and number
operators. Connection with the many-particle Schrodinger equa~
tion. Anticommutation relations. Equation of motion. Physical
implications of anticommutation. Representation of the anti-
commuting a, operators. :

Electromagnetic Field in Vacuum :

Lagrangian equations. Hamiltonian equations. Quantum equa-
tions. Commutation relations for E and H. Plane wave repre-

" sentation. Quantized field energy. Quantized field momentum.

A(r,t) in the plane wave representation. Commutation relations
at different times. |

Interaction Between Charged Particles

and the Electromagnetic Field

Lagrangian and hamiltonian equations. Elimination of ¢. Quanti-
gation of the fields. Inclusion of static fields. Perturbation theory
of the interparticle interaction. Einstein-Bose case. Fermi-Dirac

. case. Radiation theory. Transition probability for absorption.

Transition probability for emission.

Index

498

521

535



1
The Physical Basis of
Quantum Mechanics

At the present stage of human knowledge, quantum mechanics can be
regarded as the fundamental theory of atomic phenomena. The experi-
mental data on which it is based are derived from physical events that
lie almost entirely beyond the range of direct human perception. It is
not surprising, therefore, that the theory embodies physical concepts that
are foreign to common daily experience. These concepts did not appear
in the historical development of quantum mechanics, however, until a
quite complete mathematical formalism had been evolved. The need
for quantitative comparison with observation, which is the ultimate test
of any physical theory, in this case led first to the formalism and only
later to its interpretation in physical terms. '

It seems desirable in introducing the subject of quantum mechanics
to depart from thé historical order and preface the mathematical develop-
ment with a discussion of the physical concepts.! In this chapter we first
review briefly the experimental background and the ideas of the old

! For a detailed study of the historical development, see M. Jammer, ‘‘The Conceptual
Development of Quantum Mechanics” (McGraw-Hill, New York, 1966).



2 QUANTUM MECHANICS

quantum theory, then discuss the newer physical concepts of uncertainty
and complementarity, and finally lay the groundwork for the formalism
that will be developed in its most familiar form in Chap. 2. No attempt
will be made to deduce the structure of the formalism from the funda-
mental experiments; we shall try to make the theoretical development
seem. plausible rather thanr unique. The justification for the theory,
then, will rest on the agreement between deductions made {rom it and
experiments, and on the simplicity (in principle more than in praectice)
and consistency of the formalism.

1CEXPERIMENTAL BACKGROUND

Fxperimental physics prior to 1900 had demonstrated the existence of
a wide variety of phenomena, which for the most part were believed
to be explicable in terms of what we now call classical theoretical physics.
The motions of mechanical objects were successfully discussed in terms
of Newton’s equations on both celestial and terrestrial seales. Appli-
cation of this theory to molecular motions produced useful results in the
kinetic theory of gases, and the discovery of the electron by JJ. J. Thomson
in 1897 consisted in showing that it behaved like a newtonian particle.
The wave nature of light had been strongly suggested by the diffraction
experiments of Young in 1803 and was put on a firmer foundation by
Maxwell’s discovery in 1864 of the connection between aptical and elec-
trical phenomena.

INADEQUACY OF CLASSICAL PHYSICS

The difficulties in the understanding of experimental results that remained
at the beginning of this century were largely concerned with the develop-
ment of s suitable atomic model and with the late discoveries of x-rays
and radioactivity, However, there were also difficulties associated with
phenomena that should have been understood but actually were not: such
things as the spectral distribution of thermal radiation from a blackbody,
the low-temperature specific heats of solids, and the appearance of only
5 degrees of freedom in the motion of a free diatomic molecule at ordinary
temperatures. .

The beginning of an understanding of the second class of difficulties
was made by Planck in 1900, when he was able to explain the blackbody
spectrum in terms of the assumed emission and absorption of electro-
magnetic radiation in discrete quania, each of which contains an amount
of energy E that is equal to the frequency of the radiation » multiplied
by a universal constant & (called Planck’s constant):

E = hy (1.1)
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This quantum idea was later used by Einstein in accounting for some of
the experiméntal observations on the photoelectric effect. In this way
the dual character of electromagnetic radiation became established: 1t
sometimes behaves like a wave motion and sometimes like a stream of
corpuscular quanta.

At about this time, the existence of discrete values for the measur-
able parameters of atomic systems (not only of electromagnetic radiation)
became apparent through Finstein’s and Debye’s theories of the specific
heats of solids, Ritz’s classification of spectral lines, the experiment of
Franck and Hertz on the diserete energy losses of electrons on collision
with atoms, and (somewhat later) the experiment of Stern and Gerlach,
which showed that the component of the magnetic moment of an atom
along an external magnetic field has discrete values.

SUMMARY OF PRINCIPAL EXPERIMENTS AND INFERENCES

The theoretical physics of the first quarter of this century thus contained
two important inferences, obtained from the experiments and their inter-
pretations, that had not existed in 1960: the dual character of electro-

maghnetic radiation and the existence of discrete values for physical quan-
tities. The relations between the principal experimental conclusions and
the theoretical inferences are shown schematically in Table 1; for a more
detailed discussion and a bibliography, reference should be made to a
book on atomic physies.!

A third theoretical inference appeared in 1924 with the suggestion
by de Broglie that matter also has a dual {(particlelike and wavelike)
character; he assumed that the relation between the momentum p of any
particle and the length A of the corresponding wave is?

N | (1.2)

Up to that time all the evidence had indicated that matter was composed
of discrete newtonian particles; in particular, sharp tracks of charged
particles such as electrons and helium nuclei had been observed in expan-
sion cloud chambers like that invented by C. T. R. Wilson in 1911.
Shortly after this, however, Davisson and Germer (1927) and G. P.
Thomson (1928) independently observed the diffraction of electrons by
erystals and thus confirmed de Broglie’s principal supposition.

1 See, for example, F. K. Richtmyer, E. H. Kennard, and T. Lauritsen, “Introduction
to Modern Physics” (McGraw-Hill, New York, 1955); M. Born, “Atomic Physics’’
{Hafner, New York, 1951); G. P. Harnwell and W. E. Stephens, ‘“Atomic Physics”
(MeGraw-Hill, New York, 1955).

{Equation (1.2) is also valid for light quanta, as may be seen by dividing both sides
of Eq. (1.1) by the velocity of light, ¢; for a directed beam of light p = E/cand A = c¢/».
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Table 1 Relations between experimental
interpretations and theoretical inferences

Diffraction (Young 1803, Laue 1912) Electromagnetic waves
Blackbody radiation (Planck 1900)
Photoelectric effect (Einstein 1904)

il ti t
Compton effect (1923) Electromagnetic quanta

Combination principle (Ritz-Rydberg 1908) Discrete
Specific heats (Einstein 1907, Debye 1912) values for
Franck-Hertz experiment (1913) physical
Stern-Gerlach experiment (1922) quantities

2LJTHE OLD QUANTUM THEORY

What is now called the old quantum theory! was initiated by the work of
Planck on blackbody radiation and was carried farther by Einstein and
Debye. However, only after Rutherford’s discovery in 1911 that an
atom consists of a small, massive, positively charged nucleus surrounded
by electrons could the theory be applied to a quantitative description
of atoms.

BOHR-SOMMERFELD QUANTIZATION RULES

The first step in this direction was taken by Bohr in 1913, when he made
two postulates concerning the electronic or extranuclear structure of an
atom. The first of these was that an atomic system can exist in particular
stationary or quantized states, each of which corresponds to a definite
energy of the system. Transitions from one stationary state to another
are accompaniéd by the gain or loss, as the case may be, of an amount of
energy equal to the energy difference between the two states; the energy
gained or lost appears as a quantum of electromagnetic radiation, or as
internal or kinetic energy of another system. The second postulate (in
agreement with tha! of Planck and Einstein) was that a radiation
quantum has a frequency equal to its energy divided by Planck’s
constant h.

These two postulates by themselves provided some insight into the
Ritz combination principle and the Franck-Hertz experiment. To obtain
spectfic results for hydrogen, Bohr proposed a simple rule for the selection
- of the circular orbits that are to constitute stationary states: The angular
momentum must be an integral multiple of h/2x. A more general quanti-
zation rule was discovered independently by W. Wilson (1915) and by

! For a more detailed discussion than is presented in this section, see the books cited
above, and L. Pauling and E. B. Wilson, Jr., “Introduction to Quantura Mechanics,”
chap. II (McGraw-Hill, New York, 1935).



