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EXCERPTS FROM THE PREFACES
TO THE FIRST AND SECOND EDITIONS

THis book 1s devoted to the presentation of the theory of the electromagnetic and gravita-
tional fields. i.c. electrodynamics and general relativity. A complete, logically connected
theory of the electromagnetic field includes the special theory of relativity, so the latier
has been taken as the basis of the presentation. As the starting point of the derivation of
the fundamental relations we také the variational principles. which make possible the
attainment of maximum generality, unity and simplicity of presentation.

In accordance with the overall plan of our Course of Theoretical Physics (of which this
book is a part). we have not considered questions concerning the electrodynamics of con-
tinuous media, but restricted the discussion to *‘microscopic electrodynamics”—the
electrodynamics of point charges in vacuo.

The reader is assumed to be familiar with electromagnetic phenomena as discussed in
general physics courses. A knowledge of vectoi analysis is also necessary. The reader is
not assumed to have any previous knowledge of tensor analysis, which is presented in
paraliel with the development of (he theory of gravitational fields.

Moscow. December 1939
Moscow, June 1947 L. Lanpau, E. LifsHiTZ



PREFACE TO THE
FOURTH ENGLISH EDITION

THE first edition of this book appeared more than thirty years ago. In the course of reissues
over these decades the book has been revised and expanded ; its volume has almost doubled
since the first edition. But at no time has there been any need to change the method proposed
by Landau for developing the theory, or his style of presentation, whose main feature was
a striving for clarity and simplicity. | have made every effort to preserve this style in the
revisions that I have had to make on my own.

As compared with the preceding edltion, the first nine chapters, devoted to electrodyna-
mics, have remained almost without changes. The chapters concerning the theory of the
gravitational field have been revised and expanded. The material in these chapters has
increased from edition to edition, and it was finally necessary to redistribute and rearrange
it.

I should like to express here my deep gratitude to all of my helpers in this work—too
many to be enumerated—who. by their comments and advice, helped me to eliminate
errors and introduce improvements. Without their advice, without the willingness to help
which has met all my requests, the work to continue the editions of this course would have
been much more difficult. A special debt of gratitude is due to L. P. Pitaevskii, with whom
I have constantly discussed all the vexing questions.

The English translation of the book was done from the last Russian edition. which
appeared in 1973. No further changes in the book have been made. The 1994 corrected
reprint includes the changes made by E. M. Lifshitz in the Seventh Russian Edition
published in 1987.

I should also like to use this occasion to sincerely thank-Prof. Hamermesh, who has
transiated this book in all its editions, starting with the first English edition in 1951. The
success of this book among English-speaking readers is 10 a large extent the result of his
labor and careful attention.

E. M. LiFsHiTZ

PUBLISHER'S NOTE

As with the other volumes in the Course of Theoretical Physics, the authors do not. as a
rule, give references to original papers, but simply name their authors (with dates). Full
bibliographic references are only given to works which contain matters not fully expounded
in the text.



EDITOR’S PREFACE TO THE
SEVENTH RUSSIAN EDITION

E. M. Lifshitz began to prepare a new edition of Teoria Polia in 1985 and continued his
work on it even in hospital during the period of his last illness. The changes that he
proposed are made in the present edition. Of these we should mention. some revision of
the proof of the law of conservation of angular momentum in relativistic mechanics, and
also a more detailed discussion of the question of symmetry of the Christoffel symbols in
the theory of gravitation. The sign has been changed in the definition of the electro-
magnetic field stress tensor. (In the present edition this tensor was defined differently than
in the other volumes of the Course.)

June 1987 L. P. PITAEVSKI
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NOTATION

Three-dimensional quantities

Three-dimensional tensor indices are denoted by Greek letters
Element of volume, area and length: dV, df, dl

Momentum and energy of a particle: p and &

Hamiltonian function: »#

Scalar and vector potentials of the electromagnetic field: ¢ and A
Electric and magnetic field intensities: E and H

Charge and current density: p and j

Electric dipole moment: d

Magnetic dipole moment: m

Four-dimensional quantities

Four-dimensional tensor indices are denoted by Latin letters i, k, /, ... and take on the
values 0, 1, 2, 3

We use the metric with signature (+ — — =)

Rule for raising and lowering indices—see p. 14

Components of four-vectors are enumerated in the form A’ = (4% A)

Antisymmetric unit tensor of rank four is ™™, where ¢°'? =1 (for the definition, see
p-17)

Element of four-volume dQ = dx°dx'dx*dx’

Element of hypersurface dS’ (defined on pp. 19-20)

Radius four-vector: x’ = (ct, 1)

Velocity four-vector: &' = dx’/ds

Momentum four-vector: p = (£/c, p)

Current four-vector: j' = (cp, pv)

Four-potential of the electromagnetic field: 4’ = (¢, A)

Electromagnetic field four-tensor F,, = % - %‘% (for the relation of the components of
F, to the components of E and H, see p. 61)

Energy-momentum four-tensor T (for the definition of its components, see p. 78)

xifi
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CHAPTER 1

THE PRINCIPLE OF RELATIVITY

§ 1. Velocity of propagation of interaction

For the description of processes taking place in nature, one must have a system of
reference. By a system of reference we understand a system of coordinates serving to indicate
the position of a particle in space, as well as clocks fixed in this system serving to indicate
the time.

There exist systems of reference in which a freely moving body, i.e. a moving body which
is not acted upon by external forces, proceeds with constant velocity. Such reference systems
are said to be inertial. .

If two reference systems move uniformly relative to each other, and if one of them is an
inertial system, then clearly the other is also inertial (in this system too every free motion will
be linear and uniform). In this way one can obtain arbitrarily many inertial systems of
reference, moving uniformly relative to one another.

Experiment shows that the so-called principle of relativity is valid. According to this
principle all the laws of nature are identical in all inertial systems of reference. In other
words, the equations expressing the laws of nature are invariant with respect to transforma-
tions of coordinates and time from one inertial system to another. This means that the
equation describing any law of nature, when written in terms of coordinates and time in
different inertial reference systems, has one and the same form.

The interaction of material particles is described in ordinary mechanics by means of a
potential epergy of interaction, which appears as a function of the coordinates of the inter-
acting particles. It is easy to see that this manner of describing interactions contains the
assumption of instantaneous propagation of interactions. For the forces exerted on each
of the particles by the other particles at a particular instant of time depend, according to this
description, only on the positions of the particles at this one instant. A change in the position
of any of the interacting particles influences the other particles immediately.

However, experiment shows that instantaneous interactions do not exist in nature. Thus a
mechanics based on the assumption of instantaneous propagation of interactions contains
within itself a certain inaccuracy. In actuality, if any change takes place in one of the inter-
acting bodies, it will-influence the other bodies only after the lapse of a certain interval of
time. It is only after this time interval that processes caused by the initial change begin to
take place in the second body. Dividing the distance between the two bodies by this time
interval, we obtain the velocity of propagation of the interaction.

We note that this velocity should, strictly speaking, be called the maximum velocity of
propagation of interaction. It determines only that interval of time after which a change
occurring in one body begins to manifest itself in another. It is clear that the existence of a

1



2 ' THE PRINCIPLE OF RELATIVITY §1

maximum velocity of propagation of interactions implies, at the same time, that motions of
Jbodies with greater velocity than this arc in gencral impossible in nature. For if such a motion
could occur, then by means of it one could realize an interaction with a velocity exceeding
the maximum possible velocity of propagation of interactions.

Interactions propagating from one particle to another are frequently called “signals”,
sent out from the first particle and “informing™ the second particle of changes which the
first has experienced. The velocity of propagation of interaction is then referred to as the
signal velocity.

From the principle of relativity it follows in particular that the velocity of propagation
of interactions is the same in all inertial systems of reference. Thus the velocity of propaga-
tion of interactions is a universal constant. This constant velocity (as we shall show later) is
also the velocity of light in empty space. The velocity of light is usually designated by the
letter ¢, and its numerical value is '

¢ = 2.998 x 10'® cm/sec. )

The large value of this velocity explains the fact that in practice classical mechanics
appears to be sufficiently accurate in most cases. The velocities with which we have occasion
to deal are usually so small compared with the velocity of light that the assumption that the
latter is infinite does not materially affect the accuracy of the results. ’

The combination of the principle of relativity with the finiteness of the velocity of propaga-
tion of interactions is called the principle of relativity of Einstein (it was formulated by
Einstein in 1905) in contrast to the principle of relativity of Galileo, which was based on an
infinite velocity of propagation of interactions. :

The.mechanics based on the Einsteinian principle of relativity (we shall usually refer to it
simply as the principle of relativity) is called relativistic. In the limiting case when the
velocities of the moving bodies are small compared with the velocity of light we can neglect
the effect on the motion of the finiteness of the velocity of propagation. Then relativistic
mechanics goes over into the usual mechanics, based on the assumption of instantaneous
propagation of interactions; this mechanics is called Newtonian or classical. The limiting
transition from relativistic to classical mechanics can be produced formally by the transition
to the limit ¢ — co in the formulas of relativistic mechanics.

In classical mechanics distance is already relative, i.e. the spatial relations-between
different events depend on the system of reference in which they are described. The state-
ment that two nonsimultaneous events occur at one and the same point iin space or, in
general, at a definite distance from each other, acquires a meaning only when we'indicate the
system of reference which is used. ' ’

On the other band, time is absolute in classical mechanics; in other words, the properties
of time are assumed to be independent of the system of reference ; there is one time for all
reference frames. This means that if any two phenomena occur simultaneously for any one
observer, then they occur simultaneously also for all others. In general, the interval of time
between two given events must be identical for all systems of reference.

It is easy to show, however, that the idea of an absolute timeé is in complete contradiction
to the Einstein principle of relativity. For this it is sufficient to recall that in classical
mechanics, based on the concept of an absolute time, a general law of combination of
velocities is valid, according to which the velocity of a composite motion is simply equal to
the (vector) sum of the velocities which constitute this motion. This law, being universal,
should also be applicable to the propagation -of interactions. From this it would follow



§2 VELOCITY OF PROPAGATION OF INTERACTION 3

that the velocity of propagation must be different in different inertial systems of reference,
in contradiction to the principle of relativity. In this matter experiment completely confirms
the principle of relativity. Measurements first performed by Michelson (1881) showed
complete lack of dependence of the velocity of light on its direction of propagation ; whereas
according to classical mechanics the velocity of light should be smaller in the direction of the
carth’s motion than in the opposite direction.

Thus the principle of relativity leads to the result that time is not absolute. Time clapses
differently in different systems of reference. Consequently the statement that a definite time
interval has elapsed between two given events acquires meaning only when the reference
frame to which this statement applies is indicated. In particular, events which are simul-
taneous in one reference frame will not be simultaneous in other frames.

To clarify this, it is instructive to consider the following simple example. ,

Let us look at two inertial reference systems K and K’ with coordinate axes X' YZ and
X' Y’ Z' respectively, where the system K moves relative to K along the X(X’) axis (Fig. 1).

Z ra
B—A—~C

)

Y Y

FiG. 1.

Suppose signals start out from some point A on the X' axis in two opposite directions.
Since the velocity of propagation of a signal in the K. system, as in all inertial systems, is
equal (for both directions) to ¢, the signals will reach points B and C, equidistant from 4,
at one and the same time (in the K’ systemy)

But it is easy.to see that the same two events (arrival of the signal at 8 and C) can by
no means be simultaneous for an observer in the X system. In fact, the velocity of a signal
relative to the K system has, according to the principle of relativity, the same value c,
and since the point 8 moves (relative to the X system) toward the source of its signal,
while the point C moves in the direction away from the signal (sent from A to C), in the K
system the signal will reach point B earlier than point C.

Thus the principle of relativity of Einstein introduces very drastic and fundamental
changes in basic physical concepts. The notions of space and time derived by us from our
daily experiences are only approximations linked to the fact that in daily life we happen to
deal only with velocities which are very small compared with the velocity of light.

§ 2. Intervals

In what follows we shall frequently use the concept of an event. An event is described by
the place where it occurred and the time when it occurred. Thus an event occurring in a
certain material particle is defined by the three coordinates of that particle and the time
when the event occurs.

It is frequently useful for reasons of presentation to use a fictitious four-dimensional
space, on the axes of which are marked three space coordinates and the time. In this space
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events are represented by points, called world points. In this fictitious four-dimensional space
there corresponds to each particle a certain line, called a world line. The points of this line
determine the coordinates of the particle at all moments of time. It is easy to show that to a
particle in uniform rectilinear motion there corresponds a straight world line.

We now express the principle of the invariance of the velocity of light in mathematical
form. For this purpose we consider two reference systems X and K’ moving relative to each
other with constant velocity. We choose the coordinate axes so that the axes X and X’
coincide, while the Y and Z axes are parallel to Y’ and Z*; we designate the time in the
systems K and K’ by t and ¢'.

Let the first event consist of sending out a signal, propagating with light velocity, from a
point having coordinates x, y, z, in the K system, at time ¢, in this system. We obsérve the
propagation of this signal in the K system. Let the second event consist of the arrival of the
signal at point x;y,z, at the moment of time t,. The signal propagates with velocity ¢;
the distance covered by it is therefore (1, —1,). On the other hand, this same distance
equals [(x;~x,)*+(3; =) +(z,-2,)’]. Thus we can write the following relation
between the coordinates of the two events in the K system:

(x; -xx): +(»2 “}'1)2 +(:z‘zx)2""2('1 - ’1)2 =0 2.1

The same two events, i.e. the propagation of the signal, can be observed from the X
system: g

Let the coordinates of the first event in the K* system be x ), =/ t1, and of the second:
X3 ¥22)15. Since the velocity of light is the same in the K and K’ systems, we have, similarly
to (2.1):

(x3=x)?+ =y + (23— 21 =Xt = 1)) = 0. (2.2)
If x, 31201, and x, y, 2, 1, are the coordinates of any two events, then the quantity
12 = [t~ 1) = (x;~ X)) = (y; -y, = (2, - 2,)*]¢ (2.3)

is called the interval between these two events.

Thus it follows from the principle of invariance of the velocity of light that if the interval
between two events is zero in one coordinate system, then it is equal to zero in all other
systems.

If two events are infinitely close to each other, then the interval ds between them is

ds® = ¢2de? ~dx?—dy? - d2?, (2.4)
The form of expressions (2.3) and (2.4) permits us to regard the interval, from the formal
point of view, as the distance between two points in a fictitious four-dimensional space
(whose axes are labelled by x, y, z, and the product cf). But there is a basic difference
between the rule for forming this quantity and the rule in ordinary geometry: in forming the
square of the interval, the squares of the coordinate differences along the different axes are
summed, not with the same sign, but rather with varying signs.t
As already shown, if ds = 0 in one inertial system, then ds’ = 0 in any other system. On
the other hand, ds and ds’ are infinitesimals of the same order. From these two conditions
it follows that ds* and ds’? must be proportional to each other:

ds? = ads'?
where the coefficient a can depend only on the absolute value of the relative velocity of the

t The four-dimensional geometry described by the quadratic form (2.4) was introduced by H. Minkowski,
in connection with the theory of relativity. This geometry is called pseudo-euclidean, in contrast to ordinary
euclidean geometry. :
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two inertial systems. It cannot depend on the coordinates or the time, since then different
points in space and different moments in time would not be equivalent, which would be in
contradiction to the homogeneity of space and time. Similarly, it cannot depend on the
direction of the relative velocity, since that would contradict the isotropy of space.

Let us consider three reference systems K, K, K, and let ¥, and V¥, be the velocities of
systems K, and X, relative to X. We then have:

ds? = a(V,))ds?,  ds? = a(Vy)dsd.

Similarly we can write

ds? = a(V, )ds3,
where ¥V, is the absolute value of the velocity of K, relative to X,. Comparing these relations
with one another, we find that we must have

a(Vy)

— V1) .

AR (2.5)
But ¥,, depends not only on the absolute values of the vectors V, and V,, but also on the
angle between them. However, this angle does not appear on the left side of formula (2.5).
It is therefore clear that this formula can be correct only if the function a(¥) reduces to a
constant, which is equal to unity according to this same formula.

Thus,
ds® = ds'?, (2.6)

and from the equality of the infinitesimal intervals there follows the equality of finite
intervals: s = 5°,

Thus we arrive at a very important result: the interval between two events is the same in all
inertial systems of reference, i.c. it is invariant under transformation from one inertial
system to any other. This invariance is the mathematical expression of the constancy of the
velocity of Jight.

Again let x,y;2;¢, and x;);2,1; be the coordinates of two events in a certain
reference system XK. Does there exist a coordinate system K, in which these two events
occur at one and the same point in space?

We introduce the notation

L=t =1, (=X, Y+ (=3 )V +(z2~2) = 1,

Then the interval between events in the X system is:

bl
st =chi, -1},

and in the K’ system
23 2,02 v2
Sja= T~ 10,
whereupon, because of the invariance of intervals,
=1y = M3~ 13
We want the two events to occur at the same point in the K’ system, that is, we require
'll = (. Then
Sf: = Czliz‘Igz = Cz"l:z > 0.
Consequently a system of refcrence with the required property exists if s?, > 0, that is, if
the interval between the two events is a real number. Real intervals are said to be timelike.
Thus, if the interval between two events is timelike, then there exists a system of reference
in which the two events occur at one and the same place. The time which clapses between
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the two events in this system is

) 1 gy —3 12
li;= *\/Cz‘fz-lfz == (2.7)
3 ¢

If two events occur in one and the same body, then the interval between them is always
timelike, for the distance which the body moves between the two events eannot be greater
than ct,,, since the velocity of the body cannot exceed ¢. So we have always

Ilz <C‘|z.

Let us now ask whether or not we can find a system of reference in which the
two events occur at one and the same time. As before, we have for the K and K’ systems
e}, =13, = 22 ~1'%. We want to have 1}, = 0, so that

sl =—-13<0.

Consequently the required system can be found only for the case when the interval s,,
between the two events is an imaginary number. Imaginary intervals are said to be spacelike.

Thus if the interval between two events is spacelike, there exists a reference system in

which the two events occur simultaneously. The distance between the points where the
events occur in this system is

= \/lf,—cztf, = is;. (2.8)
The division of intervals into space- and timelike intervals is, because of their invariance,
an absolute concept. This means that the timelike or spacelike character of an interval is
independent of the reference system. ’ ,
Let us take some event O as our origin of time and space coordinates. In other words, in
the four-dimensional system of coordinates, the axes of which are marked x, ¥, 2, t, the
world point of the event O is the origin of coordinates. Let us now consider what relation
other events bear to the given event O. For visualization, we shall consider only one space
dimension and the time, marking them on two axes (Fig. 2). Uniform rectilinear motion of a
particle, passing through x = 0 at 1 = 0, is represented by a straight line going through O
and inclined to the ¢ axis at an angle whose tangent is the velocity of the particle. Since the
maximum possible velocity is ¢, there is a maximum angle which this line can subtend with
the ¢ axis. In Fig. 2 are shown the two lines representing the propagation of two signals

t

L

Absolute
future
Absolutely Absolutely
separated 0 " separated x
Absoiute

Pt

Fio. 2



§3 INTERVALS 7

(with the velocity of light) in opposite directions passing through the event O (i.e. going
through x = 0 at £ = 0). All lines representing the motion of particles can lie only in the
regions aOc and d0b. On the lines ab and cd, x = +ct. First consider events whose world
points lie within the region aOc. It is easy to show that for all the points of this region
¢t —x? > 0. In other words, the interval between any event in this region and the event O
is timelike. In this region 7 > 0, i.e. all the events in this region occur “after” the event O.
Aut two events which are separated by a timelike interval cannot occur simultaneously in
any reference system. Consequently it is impossible to find a reference system in which any
of the events in region aOc¢ occurred “before™ the event O, i.e. at time ¢ < 0. Thus all the
events in region aOc are future events relative to O in all reference systems. Therefore this
region can be called the absolute future relative to O.

In exactly the same way, ail events in the region Od are in the absolute past relative to O;
i.e. events in this region occur before the event O in all systems of reference.

Next consider regions dOa and cOb. The interval between any event in this region and
the event O is spacelike. These events occur at different points in space in every reference
system. Therefore these regions can be said to be absolutely remote relative to 0. However,
the concepts “‘simultaneous™, “earlier’, and “later” are relative for these regions. For any
event in these regions there exist systems of reference in which it occurs after the event
O, systems in which it occurs earlier than O, and finally one reference system in which it
occurs simultaneously with O.

Note that if we consider all three space coordinates instead of just one, then instead of
the two intersecting lines of Fig. 2 we would have a *“cone” x?+y*+2?~¢*? = 0 in the
four-dimensional coordinate system x, y, 2, 1, the axis of the cone coinciding with the 7 axis.
(This cone is called the light cone.) The regions of absolute future and absolute past-are then
represented by the two interior portions of this cone.

Two events can be related causally to each other only if the interval between them is
timelike; this follows immediately from the fact that no interaction can propagate with a
velocity greater than the velocity of light. As we have just seen, it is precisely for these events
that the concepts *‘earlier” and “later” have an absolute significance, which is a necessary
condition for the concepts of cause and effect to have meaning.

§ 3. Proper time

Suppose that in a certain inertial reference system we observe clocks which are moving
relative to us in an arbitrary manner. At each different moment of time this motion can be
considered as uniform. Thus at each moment of time we can introduce a coordinate system
rigidly linked to the moving clocks, which with the clocks constitutes an inertial reference
system.

In the course of an infinitesimal time mterval dt (as read by a clock in our rest frame) the
moving clocks go a distance v/dx? +dy?+dz”. Let us ask what time interval dt’ is indicated
for this period by the moving clocks. In a system of coordinates linked to the moving
clocks, the latter are at rest, i.e., dx’ = dy’ = dz’ = 0. Because of the invariance of intervals

ds? = c2di? ~dx* - dy*—dz? = c*dr?,

, [ dx’+dy’+d7’
dt’ = dt l————‘r“i———‘

from which
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But
dxi+dy*+dz?
di? =0

where v is the velocity of the moving clocks; therefore
]
ar =% - a J:-“’—,. (3.1)
c ¢ .

Integrating this expression, we can obtain the time interval indicated by the m'oving clocks
when the elapsed time according to a clock at rest is £, —¢,:

n” —
2
:’,-t',nfd:Jl-%. (3.2)

The time read by a clock moving with a given object is called the proper rime for this object.
Formulas (3.1) and (3.2) express the proper time in terms of the time for a system of refercnce
from which the motion is observed.

As we see from (3.1) or (3.2), the proper time of a moving object is always less than the
corresponding interval in the rest system. In other words, moving clocks go more slowly
than those at rest.

Suppose some olocks are moving in unitorm rectilinear motion relative to an inertial
system K. A reference frame K’ linked to the latter is also inertial. Then from the point of
view. of an observer in the K system the clocks in the K’ system fall behind. And con-
versely, from the point of view of the K’ system, the clocks in K lag. To convince ourselves
that there is no contradiction, let us note the following. In order to establish that the clccks
in the K’ system lag behind those in the K system, we must proceed in the following fashion.
Suppose that at a certain moment the clock in K’ passes by the clock in K, and at that
moment the readings of the two clocks coincide. To compare the rates of the two clocks in
K and K’ we must once more compare the readings of the same moving clock in K’ with the
clocks in K. But now we compare this clock with different clocks in K—with those past
which the clock in K’ goes at this new time. Then we find that the clock in K’ lags behind the
clocks in K with which it is being compared. We see that to compare the rates of clocks in
two reference frames we require several clocks in one frame and one in the other, and that
therefore this process is not symmetric with respect to the two systems. The clock that appears
to lag is always the one which is being compared with different clocks in the other
system.

If we have two clocks, one of which describes a closed path returning to the starting point
(the position of the clock which remained at rest), then clearly the moving clock appears to
lag relative to the one at rest. The converse reasoning, in which the moving clock would be
considered to be at rest (and vice versa) is now impossible, since the clock describing a
closed trajectory does not carry out a uniform rectilinear motion, so that a coordinate
system linked to it will not be inertial.

Since the laws of nature are the same only for inertial reference frames, the frames linked
to the clock at rest (inertial frame) and to the moving clock (non-inertial) have different
properties, and the argument which leads to the result that the clock at rest must lag is not
valid.



