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PREFACE

I believe that the teaching of linear algebra has become too abstract. This is
a sweeping judgment, and perhaps it is too sweeping to be true. But I feel
certain that a text can explain the essentials of linear algebra, and develop the
ability to reason mathematically, without ignoring the fact that this subject is
as useful and central and applicable as calculus. It has a simplicity which is too
valuable to be sacrificed.

Of course there are good reasons for the present state of courses in linear
algebra: The subject is an excellent introduction to the precision of a mathe-
matical argument, and to the construction of proofs. These virtues I recognize
and accept (and hope to preserve); I enjoyed teaching in exactly this way.
Nevertheless, once I began to experiment with alternatives at M.L.T., another
virtue became equally important: Linear algebra allows and even encourages
a very satisfying combination of both elements of mathematics—abstraction
and application. : ,

As it is, too many students struggle with the abstraction and never gé_t to .
see the application. And too many others, especially those who are outside
mathematics departments, never take the course. Even our most successful
students tend to become adept at abstraction, but inept at any calculation—
solving linear equations by Cramer’s rule, for example, or understanding vigen-
values only as roots of the characteristic equation. There is a growing desire to
make our teaching more useful than that, and more open.
~ We hope to treat linear algebra in a way which makes sense to a wide variety
of students at all levels. This does not imply that we have written a cookbook;
the subject deserves better than that. It does imply less concentration on rigor
for its own sake, and more on understanding—we try to explain rather than lo
deduce. Some definitibns are formal, but others are allowed to come to the
‘surface in the middle of a discussion. In the same way, some-proofs are intended
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. to be orderly and precise, but not sall. In ever,v'/ case the underlying theory has:
to be there; it is the core of the subject, but it can be motwabed and reinforced’
by examples. :

One specific difficulty in constructmg the course is always present, and is
hard to postpone: How should it start? Most students come to the first class
already knowing something about linear equations. Nevertheless, we are con-
vinced that linear algebra must begin with the fundamental problem of n equa~
tions in n unknowns, and that it must teach the simplest and most. useful
method of solution—Gaussian elimination{§pot determinants!). Fortunately,
even though this method is simple, there are a number of insights that are
central to its understanding and new to almost every student. The most
important is the equivalence between elimination and matrix factorigation; the
coefficient matrix is transformed into a product of triangular matrices. This
provides a perfect introduction to matrix notation and matrix multiplication.

The other difficulty is to find the right speed. If matrix calculations are
already familiar, then Chapler 1 must not be too slow; the next ghapter is the one
which demands hard work. Its goal is a genuine understanding, deeper than
elimination can give, of the equation Az = b. I believe that the introduction of
four fundamental subspaces—the column space of A ; the row space; and their
orthogonal complements, the two nullspaces—is an effective way to generate
examples of linear dependence and independence, and to illustrate the ideas of
basis and dimension and rank. The orthogonaslity is also a natural extension
to n dimensions of the familiar geometry of three-dimensional space. And of
course those four subspaces are the key to Az = b.

Chapters 1-5 are really the heart of a course in linear algebra. They contain
a large number of applications to physics, engineering, probability and statistics,
economics, and biology. (There is also the geometry of a methane molecule,
and even an outline of factor analysis in psychology, which is the one applica-
tion that my colleagues at M.I.T. refuse to teach!) At the same time, you will
recognize that this text can certainly not explain every possible application of
matrices. It is simply a first course in linear algebra. Our goal is not to develop
all the applications, but to prepare for them—and that preparation-can only
come by understanding the theory.

This theory is well established. After the vector spaces of Chapter 2, we
study projections and inner products in Chapter 3, determinants in Chapter 4,

" and eigenvalues in Chapter 5. I hope that engineers and others will look espe-

cially at Chapter 5, where we concentrate on the uses of diagonalization
(including the spectral theorem) and save the Jordan form for an appendix.

Each chapter is followed by a set of review exercises, and is 80 organized that

its last section is optional; this applies also to Section 3.4 on pseudoinverses.

Jn a one-semester or a one-quarter course, the instructor must decide whether
the positive definite matrices of Chapter 6 or the linear programs of Chapter 8

- are the more essential to his class; I believe that Sections 8.1 and 8.4 will allow
" a brief but worthwhile introduction to linear programming and game theory.
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The book also contains the essentials of three quite different courses. One is
on numerical linear algebra, which involves all of Chapter 1, the essential
facts of Chapters 2 to 6, and then Chapter 7 on computations and Section 8.2
on the simplex method. Another is “linear algebra for statistics,” which must
treat Chapters 3 and 6 much more completely. And the third possibility is to
regard inequalities as coequal with equations, as economists do, and go as
quickly as possible from Az = b to linear programming and duslity.

We should like to ask one favor of the mathematician who simply wants to
teach basic linear algebra. That is the true purpose of the book, and we hope |
he will not be put off by the “operation counts,” and the other remarks about
numerical computation, which arise especially in Chapter 1. From a practical
viewpoint these comments are obviously important. Also from a theoretical
viewpoint they have a serious purpose—to reinforce a detailed grasp of the
elimination sequence, by actually counting the steps. I normally ask the class
to make this count during the first or second lecture, with completely un-
predictable results. But there. is no need to discuss this or any other computer-
oriented topic in class; any text ought to supplement as well as summarize the
lectures. ,

In short, a.book is needed that will permit the applications to be taught
successfully, in combination with the underlying mathematics. That is the
book I have tried to write.

For help in writing it, I take this special opportunity to give thanks to Tom
Slobko for his encouragement, to Ursula for typing everything with such gentle-
grace, and to my family who are precious above all. Beyond this there is an
earlier debt, which I can never fully repay. It is to my parents, and I now
dedicate the book to them, hoping that they will understand how much they
gave to it: Thank you both. .

GILBERT STRANG
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GAUSSIAN
ELIMINATION

INTRODUCTION m 1.1

The central problem of linear algebra is the solution of simultaneous linear
equations. The most important case, and the simplest, is when the number of
unknowns equals the number of equations. Therefore we begin with this prob-
lem: n equations tn n unknowns.

Two ways of solving simultaneous equations are proposed almost in a sort
of competition, from high school texts on. The first is the method of elimina-
tion: Multiples of the first equation in the system are subtracted from the
other equations, in such a way as to remove the first unknown from those
equations. This leaves a smaller system, of n — 1 equations in n — 1 un-
knowns. The process is repeated over and over until there remains only one
equation and one unknown, which can be solved immediately. Then it is not
hard to go backward, and find all the other unknowns in reverse order; we
shall work out an example in a moment. A second and more sophisticated way
introduces the idea of determinants. There is an exact formula, called Cramer’s
rule, which gives the solution (the correct values of the unknowns) as a ratio
of two n by n determinants. It is not always obvious from the examples that
are worked in a textbook (n = 3 or n = 4 is about the upper limit on the
patience of a reasonable human being) which way is better.

In fact, the more sophisticated formula involving determinants is a disaster,
and elimination is the algorithm that is constantly used to solve large systems
of simultaneous equations. Our first goal is to understand this.algorithm. It is
generally called Gaussian elimination.
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The algorithm is deceptively simple, and in some form it may already be
familiar to the reader. But there are four aspects that lie deeper than the simple
mechanics of climination, and which—together with the algorithm itself—we
want to explain in this chapter. They are:

(1) ‘The interpretation of the elimination method as a factorization of the
. coeflicient matrix. We shall introduce mairiz notation for the system of simul-
taneous equations, writing the n unknowns as a vector z and the n equations
in the matrix shorthand Az = b. Then elimination amounts to factoring A into
a product LU of a lower triangular matriz L and an upper triangular matriz U.
This is a basic and very useful observation.

Of course, we have to introduce matrices and vectors in a systematic way,
as well as the rules for their multiplication. We also define the transpose AT
and the inverse A—1 of a matrix 4.

(2) In most cases the elimination method works without any difficulties or
modifications. In some exceptional cases it breaks down—either because the.
equations were originally written in the wrong order, which is easily fixed by
exchanging them, or else because the equations Az = b fail to have a unique
solution. In the latter case there may be no solution, or infinitely many. We
want to understand how, at the time of breakdown, the elimination process
identifies each of these possibilities.

(3) It is essential to have a rough count of the number of arithmetic opera-
tions required to solve a system by elimination. In many practical problems
the decision of how many unknowns to introduce—balancing extra accuracy
in a mathematical model against extra expense in computing—is governed by
this operation count.

(4) We also want to see, intuitively, how sensitive to roundoff error the
solution x might be. Some problems are sensitive; others are not. Once the
source of difficulty becomes clear, it is easy to guess how to try to control if.
Without control, a computer could carry out millions of operations, rounding
each result to a fixed number of digits, and produce a totally useless “solution.”

The final result of this chapter will be an elimination algorithm which is
about as efficient as possible. It is essentially the algorithm that is in constant
use in a tremendous variety of applications. And at the same time, under-
standing it in terms of matrices——the coefficient matrix, the matrices that carry
out an elimination step or an exchange of rows, and the final triangular factors
L and U—is an essential foundation for the theory.

1.2 @ AN EXAMPLE OF GAUSSIAN ELIMINATION

The way to understand this subject is by example. We begin in three dimensions
with the system

2u+ v4+w= 1
4u 4+ v = —~2 (1
—2ut+2v4+w= 1T.

ERIRE
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The problem is to find the unknown values of u, v, and w, and we shall apply
Gaussian elimination. (Gauss is recognized as the greatest of all mathemati-
cians, but certainly not because of this invention, which probably took him
ten minutes. Ironically, however, it is the most frequently used of all the ideas
that bear his name.) The method starts by subtracting multiples of the first
equation from the others, so as to eltminale u from the last two egquations. This
requires that we

(a) subtract 2 times the first equation from the second;
(b) subtract —1 times the first equation from the third.

The result is an equivalent system of equations
2ut+v+ w= 1
-1y — 2w = —~4 (2
3v+2w= 8.

The coefficient 2, which multiplied the first unknown u in the first equation,
is known as the pivet in this first e]Jimination step.

At the second stage of elimination, we 1ghore the first equation. The other
two equations involve only the two unknowns v and w, and the same elimina-
tion procedure can be applied to them. The pivot for this stage is —1, and a
multiple of this second equation will be subtracted from the remaining equa-
tions (in this case there is only the third one remaining) so as to eliminate the
second unknown v. This means that we

{¢) subtract —3 times the second equation from the third

The elimination process is now complete, at ieast in the “forward” direction,
and leaves the simplified system i

2u4v +w= 1 _
=1y —2w = —4 ‘ (3)
-4y = —4,

There is an obvious order in which to solve this system. The last equation
gives w = 1; substituting into the second equation we find v = 2; then the
first equatlon gives ¥ = —1. This simple process is called back-subaututwn
It is easy to understand how the elimination idea can be extended to n
equations in # unknowns, no matter how large the system may be. At the first
-gtage, we use multiples of the first equation to annihilate all coefficients below
the first pivot. Next, the second column is cleared out below the second pivot;
and so on. Finally, the last equation contains only the last unknown. Back-
substitution yields the answer in the opposite order, beginning with the last
unknown, then solving for the next to last, and eventually for the first.
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EXERCISE 1.2.1. Apply elimination and back-substitution to solve
2u—3 ° =3
fu— S+ w=7 .
2u - y— 3w =3,
What are the pivots? List the three operatlom in which a multiple of one row is sub-

tracted from another.

EXERCISE 1.2.2 Solve the system

2u— v =0
—u+ 22— w =0
- v+ 2u— z=10

— w+ 2z2= 5.

We want to ask two questions. They may seem a little premature—after all,
we have barely got the algorithm working—but their answers will shed more
light on the method itself. The first question is whether this elimination proce-
dure always leads to the solution. Under what circumstances could the process
break down? The answer is: If none of the pivots are zero, there is only one
solution to the problem and it is found by forward elimination and back-
substitution. But if any of the pivots happen to be zero, the elimination tech-
nique cannot proceed.

If the first pivot were zero, for example, the ehmma.tmn of u from the other
equations would be impossible. The same is true at every intermediate stage.
Notice that an intermediate pivot may become zero during the elimination
process (as in Exercise 1.2.3 below) even though in the original system the
coefficient in that place was not zero. Roughly speaking, we do not know whether
the pivots are nonzero until we try, by actually going through the elimination
process. ' ‘

In most cases this problem of a zero pivot can be cured, and elimination can
proceed to find the unique solution to the problem. In other cases, a breakdown
is unavoidable since the equations have either no solution or infinitely many.

We postpone to a later section the analysis of breakdown. :

The second question is very practical, in fact it is financial. How many sepa-
rate arithmetical operations does elimination reguire for a system of n equations in
n unknowns? If n is large, a computer is going to take our place in carrying out
the elimination (you may have such a program available, or be able to write
one) but since 4ll the steps are known in advance, we should be able to predict
how long the computer will take. For the moment we ignore the right-hand
sides of the equations, and count only the operations on the left. These opera-
tions are of two kinds. One is a division by the pivot in order to find out what
multiple (say 1) of the pivotal equation is to be subtracted from an equation
below it. Then when we actually do this subtfaction of one equation from

1 R
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another, we continually meet a ‘‘multiply-subtract” combination; the terms
in the pivotal equation are multlphed by I, and then subtracted from the equa-
tion beneath it.

Suppose we agree to call each division, and each multiplication—subtraction,
a single operation. At the beginning, when the first equation has length n, 4t
lakes n operations for every zero we achieve in the first column—one to find the
multiple {, and the others to find the new entries along the row. There are
n — 1 rows underneath the first one, and therefore n — 1 zeros to be produced
below the first pivot, so the first stage of elimination needs n(n — 1) = n* — n
operalions. After that stage, the first column is set. Now notice that later stages
are faster because the equations are becoming progressively shorter; at the
second stage we are working with only » — 1 equations in n — 1 unknowns.
When the elimination is down to k equations, only k(k — 1) = k* — k opera-
tions are needed to clear out the column below the pivot—by the same reason-
ing that applied to the first stage, when k equaled n. Altogether, therefore, the
total number of arithmetical operations on the left side of the equaiions is

P=nR—-—n)4+ e+ -k +- -4+ (12-1).
(Notice that there was no work to do at the last stage, 12 — 1 = 0, when we
are down to one equation in one unknown.) This sum P is known to equal
3 _

hd id 1 1 1 n
g 2-— g — —— — 3
P=Fr-1 3n(n+2)(n+l) Tnin+ 1) =

(Here calculus is actually useful as a check. The integral of z* from 0 to = is
n?/3, and the integral of z is n?/2. These are exactly the leading terms in the
two sums.) If n is at all large, a very good estimate for the number of operatwns
is P~ n/3. .

Back-substitution is considerably faster. The last unknown is found from
one operation (a division by the last pivot), the second to last unknown re- -
Quires two (a multiplication—subtraction and then a division), and so on. The
kth step involves only k operatxons Therefore, back-substitu’i ion requires alto-
gether

Q= Z k= én(n + 1) Ng— operations.

A few years ago, almost every mathematician would have guessed that these
numbers were essentially optimal, in other words that a general system of
order n could not be.solved with much fewer than 73/3 multiplications. (There
were even theorems to demonstrate it, but they did not allow for all possible
methods.) Astonishingly, that guess has been proved wrong, and there now
exists a method that requires only Cn'*s7 operations! Fortunately for elimina-
tion, the constant (' is by comparison so large, and so many more additions
are required, and the computer programming is so awkward, that the new

. method is largely of theoretical interest. It seems to be completely unknown

whether the exponent can be made any smaller.
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EXERCISE 1.2.3 Apply elimination u;'the system
ut+ v4w= -2
ut+v—w= 6
u— v+w=—1. )
When & zero pivot arises, exchange that equation for the one below it, and proceed.
What coefficient of v in the third equation, in place of the present — 1, would make it
impossible to proceed—and force the elimination method to break down?
. EXERCISE 1.2.4 For a system of two eﬁuations like
au+bv=0
cu+tdo=1 )
lst explicitly the P = 2 individual operations that are applied to the left side.
EXERCISE 12.5 With reasonable assumptionis on computer speed and cost, how large

~ a system can be solved for $1, and for $10007 Use n*/3 as the operation count, and you
might pay $1000 an hour for a computer that could average a million operations a seeond.

EXERCISE 1.2.6 (very optionsl) N ormally the multiplication of two conhplex numbers
| (@+ ib)(c+ id) = (ac — bd) + i(be+ ad)

involves the four separate multiplications ac, bd, bc, ad. Ignoring 1, can you compute
the quantities ac — bd and bc 4~ ad with only three multiplications? (You may do addi-
tions, such as forming @ + b before multiplying, without any penalty.)

EXSRCISE 127 Use elimination to solve
ut+ v+ w= 6
ut 2t 20=11
2u+4 39— 4w= 3.

1.3 B MATRIX NOTATION AND MATRIX MULTIPLICATION

So far, with our 3 by 3 example, we have been able to write out all the equations
in full. We could even list in detail each of the elimination steps, subtracting
a multiple of one row from another, which put the system of equations into 4
simpler form. For a large system, however, this way of keeping track of the
elimination would be hopeless; a much more concise record is needed. We shall
now introduce matrix notation to describe the original system of equations,
- and matrix multiplication to describe the operations that make it simpler.
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e Notice that in our example

2u+-v+w= 1
4u+ v = —~2
—2u+4+2v+4+w 7

three different typea of quantities appear. There are the unknowns u, v, w;
there are the right sides 1, —2, 7; and finally, there is a set of nine numerical
coefficients on the left side (one of which happens to be zero). For the cotumn
of numbers on the right side—the inhomogeneous terms in the equations—we
introddce the vector notation

1
b=} —-21.
7

This is a three-dimensional column vector. To represent it geometrically, we
‘can take its three components as the coordinates of a point in three-dimensional
space. Then every point in the space is matched with a three-dimensional
vector (which we may visualize as an arrow, or a directed line segment, which
starts at the origin and ends at the point).
The basic operations are the addition of two such vectors and the mulliplication
 of a vector by a scalar. Geometrically, 2b is a vector in the same direction as b
but twice as long; —2b goes in the opposite direction; and b + c is found by
" placing the starting point of the vector ¢ at the end point of b. Algebraically,
this just means that vector operations are carried out component by component:

1 2 -2
2b=2f-2|=|—4]1, -2b=| 4],
7 14 —-14
1 1 27
bt+ec=]|—-21+]|—-4|=| —6].
70 |-4] | 3

Two vectors can be added only if they have the same dimension, that is, the
same number of components. .
The three unknowns in the equation are also represented hy a vector:

U . e |
the unknown is z =] v ; the solutionis z =] 2
w . 1

Again these are three-dimensional column vectors. For the array of nine coeffi-
cients, we introduce a ‘“matrix’”’ with three rows and three columns. This is the
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coefficient matrix

211
A= 4 1 0
-2 2 1

Notice that, because the number of equations in our example agrees with the
number of unknowns, A is a square matriz (of order three). More generally,
we might have n equations in n unknowns—with a square coefficient matrix of
order n. Or still more generally, we might have m equations and » unknowns.
In this case the coefficient matrix will be rectangular, with m rows and n
columns—in other words, it will be an “m by n matrix,”

Matrices are added to each other, or multiplied by numerical constants,
exactly as vectors are—one component at a time. In fact we may regard vectors
as special cases of matrices; they are matrices with only one column. As before,
two matrices can be added only if they have the same shape:

21 1 2 3 3 21 4 2
3 0j+1-3 1]=10 1], 213 0j=(6 0
0 4 1 2 1 6 0 4 0 8

Multiplication of a Matrix and a Vector

Now we put this notation to use. We propose to rewrite the system (1) of
three equations in three unknowns in the simplified matrix form Az = b.
Written out in full, this form is

2 11 U 1
4 1 O0jjv | = —2
—2 2 1|lw 7

The right side is clear enough; it is the column vector of inhomogeneous terms.
The left side consists of the vectorz, premultiplied by the matrix A. Obviously,
this multiplication will be defined ezactly so as to reproduce the original system
(1). Therefore, the first component of the product Az must come from “multi-
plying”’ the first row of A into the column vector z:

2 1 1J[ul=02u+v+wl ‘
v 7 (4)
w
_ This equals the first component of b; 2u + v + w = 1 is the first equation in
our system. The second component of the product Az is determined-by the
second row of A-—it is 4u + v—and the third component —2u + 2v + w comes

from the third row. Thus the matrix equation Az = b is precisely equlva.lent
to the three simultaneous equations with which we started.



