Methodical
Programming
in

COBOL

Ray Weltand

Qs



Methodical
Programming
in

COBOL

Ray Weliand

Department of Computer Science
University of Strathclyde

Pitman



PITMAN BOOKS LIMITED
128 Long Acre, London WC2E 9AN

PITMAN PUBLISHING INC.
1020 Plain Street, Marshx‘-igld, Massachusetts

Associated Companies

Pitman Publishing Pty Ltd, Melbourne

Pitman Publishing New Zealand Ltd, Wellington
Copp Clark Pitman, Toronto

© Ray Welland, 1983
First published in Great Br}tain 1983

British Library Cataloguing in Publication Data

Welland,Ray
Methodical programming in COBOL.
1 .COBOL (Computer program language)
I.Title
001.64"'24 QA76.73.C25

ISBN 0-273-01820-5

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording and/or
otherwise, without the prior written permission of the publishers.
This bock may not be lent, resold, hired out or otherwise disposed
of by way of trade in any form of tfinding or cover other than that in
which it is published, without the prior consent of the publishers.
This book is sold subject to the Standard Conditions of Sale of Net
Books and may not be resold in the UK below the net price.

Printed and bound in Great Britain by
Biddles Ltd, Guildford, Surrey



Preface

At the time of writing, the most widely used commercial programming
language is COBOL which has been in existence for more than 20 years.
Similarly the most widely used scientific programming Llanguage is
FORTRAN, first formulated in 1957. It has often been claimed that
better Languages exist for 'both fields but the difficulty with
introducing a new Language is the enormous investment in existing
software written in both COBOL and FORTRAN. Therefore it seems Llikely
that both these languages will remain with us for a long time yet.

The objective of this book is to try to combine the modern ideas of
structured programming with the existing COBOL language to show how
good programs can be constructed.

The main targets of this book are students of computing or data
processing who may or may not have had previous programming experience.
The 1ideas have beer developed while teaching C€OBOL as a first
programming Language to accountancy students and teaching COBOL to
computing science students already conversant with Pascal.

The approach used in this book is to separate the tasks of program
design and coding. Programs are designed using an abstract program
design language which can then be translated into COBOL using a defined
set of transformations. One attraction of this approach is that
students can learn to program without getting overwhelmed by the mass
of detail involved in even a simple COBOL program. It would also be
possible to design a different set of transformations from the design
language into another programming language.

Program designs can be checked by the lecturer, or demonstrator, and
discussed before coding commences (and also marked if required). This
means that many logical errors can be trapped before the program is
actually coded in COBOL.

Use of the book

This book is structured so that the student should be able to design
quite substantial programs by the end of Chapter 2. This will enable
useful practical work to be undertaken while the fundamental elements
of COBOL are explained in Chapters 3 and 4. By the end of Chapter 4
the student should be able to write and run complete, simple COBOL
programs.

The next two chapters introduce more features of the Language
concerned with the handling of input and output, and the expression of
more complex algorithms. At the end of Chapter 6 the student has been
introduced to all the language elements required to write quite complex
COBOL programs. Chapters 7 and 8 are designed to give a 'breathing
space' while the student consolidates his understanding by practical
experience of COBOL programming.

From Chapter 9 onwards more features of the language are introduced
and the student's repertoire of programming techniques 1is steadily
increased.

The Appendices are designed to give summaries of various features of

v



3 -

COBOL for quick referene

me

when writing programs.
Exercises

Programming is essentially a practical subject and to take full
advantage of this book the student must actually design and run some
programs. Programming is Llike swimming - one can read all the books
avaijlable but until one 'takes the plunge” one dcesn't start really
Learning.

The exercises are divided into two categories: pencil and paper
exercises, to follow up points made in the text, and programming
exercises which involve the design, writing and running of complete
computer programs. It is recommended that the student should do all of
the pencil and paper exercises, and at least one of the programming
exercises at the end of each chapter. -

Hints on the solutions to the pencil and paper exercises are given
at the end of the hook.

The COBOL Languaqe

The language used 1in this book is that defined in the 1974 American
National Standard for COBOL, wusually called ANS COBOL '74. The
definition of ANS COBOL '74 is modular and within each module there are
levels of implementation. Therefore what is legitimately described as
an ANS COBOL '74 compiler may not have all the features introduced in
this bock. To assist readers using Llow-level ANS COBOL compilers,
notes are inserted in the text where problems may arise, and Appendix 5
gives some hints on alternative constructs for methodical programming.

Acknowlcdgements

I would Llike to thank Charles Clarke and Roy McAllister of the
Management Services Division, Strathclyde University, for their help in
using the local system to test the COBOL programs in this book. I
would also Llike to acknowledge the strong influence of two ex=
colleagues: Bill Findlay and David Watt, of Glasgow University, who
taught me much about structured programming.

This book also owes a great deal to another ex-colleague John
Jeacocke, of Glasgow University, who encouraged me to use the style of
teaching advocated in this book, helped to formulate the design
Language and made many helpful criticisms of various drafts of the
book. Finally, I would Llike to thank the consulting editor, David
Hatter, for his constructive criticisms, and Alfred Waller of Pitmans
for his support throughout the writing of this book.

Ray Welland
January 1983 University of Strathclyde

vi



Contents

Preface

v
Chapter 1. Introduction 1
1.1 History and Objectives of COBOL 1
1.2 The COBOL Computer 2
1.3 The Real Computer: hardware and software 4

Chapter 2. The Program Design Language 6
2.1 Basic Operations 6
2.2 Selection and Repetition 8
2.3 Simple Programs 10
2.4 Refinement 14
2.5 Case Study 17 .
Exercises 2 21
Chapter 3. The COBOL Program 23
3.1 Program Structure 23
3.2 Reserved Words and User-defined Names 24
3.3 The Structure of Data 25
3.4 Types of Data 26
Exercises 3 28
Chapter 4. Procedural Statements 30
4.1 The Structure of the Procedure Division 30
4.2 Basic Operations in COBOL 30
4.3 Selection and Repetition 34
4.4 Case Study 39
Exercises & 45
Chapter 5. More Input and Output 48
5.1 Input and Storage of Decimal Values 48
5.2 Editing and Output Records s 49
5.3 Signed Numbers 52
5.4 Headings on Output 53
5.5 Multiple Output Records 57
5.6 Case Study 60
Exercises 5 66
Chapter 6. Developing Algorithms 70
6.1 Data Validation 70
6.2 Class Conditions and Redefinition 71
6.3 Condition-names 74
6.4 Nested IF Statements 75
6.5 Compound Conditions 78
6.6 Boolean Data-items 83
6.7 Case Study 85
Exercises 6 . 100

iii



Chapter
7.1
Tal
73

7.4

7. Errors and Testing
Syntax Errors
Dapugaing

Testing

Case Study

Exercises 7

Chapter
8.1

hapter
921
9.2
9.3
2.4
9.5
Exer

Chapter
10.1
10.2
10.3
10.4
105
10.6
Exerc

Chapter
1.1
11.2
113
1.4
11.5

Appendix
Appendix
Appendix
Appendix
Appendix
Answers

Index

iv

8. Program Structire
Identification Division
Environment Division

Data Divisien

Procedure bDivision

Lines and Pages

Input Records of Differing Types
Case Study

rcises 8

9. Multiple Files

Multiple Input and Output Files

Serial File Update

A First Attempt at an Update Algorithm
The "Balanced Line' Algorithm

Case Study

cises .9

10. Tables

Repetitive Data in an Input Record
Tables in Working-Storage

Repeated Group-items

Searching a Table
Multi-dimensional Tables

Case Study

ises 10

11. Additional Features of COBOL
The GO TO Statement

Inter-program Communication

Source Library and Copy Directives
Relative Files

Indexed Files

1. The COBOL Program Skeleton

2. COBOL Prcagram Layout

3. Reserved Words

4, Summary of COBOL Syntax

5. Notes for Users of Low-level ANS COBOL

to Selected Exercises

103
103
105
109
114
117

119
119
120
122
126
131
134
139
155

158
158
163
167
176
182
200

202
202
210
217
220
227
229
238

242
242
243
246
247
251

254
257
260
263
272

280

293



1 Introduction

This chapter includes a very brief history of COBOL and a survey of
some of the ‘computer basics' which are necessary for this book.
However, it is not intended that this book should be read in isolation.
Pressure on space dictates that it cannot cover fundamental concepts of
computing in any depth while doing justice to its main theme of
methodical programming in COBOL. Therefore it will be assumed that the
readers are familiar with the basic concepts of computing through
attendance at formal classes, from background reading or from using
their own home computer.

1.1 History and Objectives of COBOL

In the Llate 1950s it was recognized that the existing programming
Languages were inadequate for building large commercial data processing
systems. Most programming at that time was being carried out in
assembly Llanguages which meant that programs, and skilled staff, were
tied to one particular type of computer. Therefore the American
Department of Defense, one of the biggest users of computers for
inventory control and accounting, pulled together a group of experts
with the objective of creating a new high-level programming Llanguage
suitable for commercial applications of computing. The objectives
which this group, called the CODASYL Committee, were given for the
design of the language were as follows.

(a) To specify a language independent of any make or model of computer,
open—ended and stated in both an English notation and a narrative
forme

(b) The Llanguage should be extensible so that it could be run on future
ranges of machines.

(c) It should be easy to Llearn so that relatively inexperienced
programmers could make a significant contribution.

(d) Programs written in the language should be '"self-documenting" and
also '"readable" by managers and non-technical people.

The committee proposed the Llanguage now known as COBOL (COmmon
Business Oriented Language) which has been revised regularly since its
inception 1in 1960. The Llanguage 1is reviewed regularly and new
proposals published in the COBOL Journal of Development. Various
manufacturers have also added their own enhancements to the Llanguages
giving rise to a wide range of 'dialects' of the language. 1In order to
maintain the portability of the Llanguage, one of its most important
advantages, an American National Standard for COBOL was published in
1968 and a new standard in 1974. This book is based on the 1974
standard, commonly called ANS COBOL 74, as this 1is currently the most
widely used version of COBOL. It is expected that a new standard will
be agreed in 1983 but this will -take some time to become widely
implemented and accepted.



Cobol is a very 'rich' and powerful programming language, it has a
wide variety of features designed to handle the most complex problems
in commercial data processing. A danger for the student is being
overwhelmed by this plethora of facilities. This book uses only a
minimal useful subset of COBOL initially so that the trainee programmer
can grasp the basic principles before learning to use the more advanced
features of the language.

1.2 The COBOL Computer

When designing a programming Llanguage it is necessary to have a
conceptual model of the computer to be used, which is called the
abstract machine. For the purposes of this book we shall assume that
the model shown in Figure 1.1 is the first approximation to the COBOL
abstract machine.

-

Input Output
File File
DATA STORE
Input z Input |Output 2 Output
Record Area Area Record
Temporary
Storage

PRIGRAM STORE

Stored
Instructions

Figure 1.1

The input and output files are divided into-records. Each record in
a file is in a similar format and usually contains data about one of a
group of related 'things'. For example, a file might contain details
about a company's employees; each employee would have a record in the
file and each record will contain similar data: works number, name,
address, national insurance number, salary etc.

A file is accessed in such a way that only one record from a file is
available to the program at ‘any given time, the current record.
Initially it will be assumed that there is one dnput file and one
output file. The current record of the input file is held in the input
area and records are written to the output file via an output area. In
a program which does anything useful there will need to be internal
storage for intermediate values in calculations, for example. Values
held in such temporary storage exist only for the Lifetime of a program
and if a permanent copy of the values is required they must be sent to

2



the output file. Therefore in the simple model of the COBOL computer
the data store is divided into three parts: the input area, output area
and temporary storage.

Each of the areas of the data store is divided into a hierarchy of
units of storage called records, group-items and elementary-items. At
the lowest Llevel, the elementary-item is a named Llocation which can
hold a value which can either be a number or a string of characters.
Data processing is built around using these stored values in arithmetic
operations, transferring them from Llocation to location and making
simple decisions based on the values stored in specific locations.

The simple machine will need a number of basic operations which can
then be combined to create programs. A program is a sequence of
instructions which, in the absence of idinstructions which change the
'flow of control', will be executed in the order they appear in the
program store. Obviously there will need to be an operation to get a
record from the input file, making it available in the ihput area, and
a complementary operation to put a record, which has been built up in
the data store, into the output file. There will also need to be a
transfer operation to allow data to be copied from one storage location
to another and basic arithmetic operations: add, subtract, multiply and
divide, operating on the stored data to create new values.

It would be possible to write a simple computer program consisting
only of a sequence of basic operations to be carried out one after the
other from the first operation to the last. Such a simple computer
program would consist of three parts: initialization, processing and
termination. In the majority of programs the processing part will be
more complex than a simple sequence of instructions but these three
basic parts will still exist.

The initialization will define an initijal state for the computer,
processing will change the state of the machine by transforming data in
some way and termination will tidy up before the program finishes. For
example, initialization will define the initial status of the input and
output files and the initial values in the data store. At any given
time during the processing it may be necessary to find out the current
state of the machine, e.g., are there any more input records?
Termination in a simple machine might consist of releasing the input
and output files and printing some message about the final state of the
machine.

Most useful programs, particularly in commercial data processing,
will involve repetitions of sequences of instructions. For example,
going back to the employee file it should be possible to establish a
sequence of operations, called an algorithm, for calculating an
employee's pay given certain facts such as salary, tax code,
superannuation rules etc. This algorithm can then be repeated for each
employee's record in the file. Therefore in addition to the basic
operations outlined above a special operation to allow controlled
repetition of sequences of operations will be required. This implies
that a method of recognizing conditions which arise will have to be
included in the Llanguage. Conditions are formalized questions which
can be asked and the result returned will be either true or false, a
'Boolean' value.

Many algorithms will involve the choice of alternative courses of
action depending on the value of data. Going back fto the employee
example there might be two different superannuation schemes available
to employees, each requiring a special deduction calculation routine.
The type of superannuation scheme might be distinguished by a special

3



code 'A' or 'B' in the employee record which needs to be recognized by
the program and the appropriate routine used. Therefore in addition to
repetition a selection operation is required.

Therefore, to summarize, the basic design language used in this book
will have the following operations:

(a) record input/output: get and put,

(b) data transfer, within the data store,

(c) calculation, to perform simple arithmetic,
(d) controlled repetition,

(e) selection.

In addition to these operatioms there will also have to be facilities
for the description of the form of data, and condition tests, to
support (d) and (e), above.

These features together with one additional concept called
refinement, which is purely a program construction technique, will
define the subset of COBOL described in the first part of this book.
This subset is powerful enough to write quite complex programs.

1.3 The Real Computer: hardware and software

The machine shown in Figure 1.1 and described in the previous section
is called an abstract machine because no such machine actually exists.
A program written in COBOL, amd designed to run on this abstract
machine, will have to be transtated into a lower Llevel language which
can be run on a real machine. This real machine, or hardware, need not
concern the programmer since it can be made to obey the rules for the
abstract machine.

In running a COBOL program, there are two distinct phases:
compilation and execution. Compilation is the process of translating a
COBOL program into a suitahble low-level language and is carried out by
a special program called a compiler, which is part of the software for
a particular computer system. Because this translation process is
mechanical, the COBOL program needs to be written in a precise form,
according to certain syntactic rules. Therefore part of compilation is
checking that the syntax of the program is correct and identifying
errors. However, the fact that a program is syntactically correct does
not mean that it will do anything useful. In the same way sentences in
English can be syntactically correct but meaningless: 'The mat sat on
the cat', for example. Once a program has been successfully compiled
it needs to be executed and tested with a variety of types of input
data to prove that it works. The process of debugging a program is
concerned with the location and correction of errors shown to exist by
testing. The steps in program development are summarized in Figure
1.2

Students beginning in programming are often discouraged because
their programs do not work at the first attempt. Creating a working
program is an iterative process; one frequently takes one step forward
and two steps back. The first stage in this process is to design the
program and ‘desk check' the design by stepping through the design
. manually. The design can then be translated into COBOL, turned into
machine readable form using a computer terminal perhaps, and an attempt
made to compile this program. This will almost certainly result fin
syntax errors, detected by the compiler, which will have to be
corrected by the programmer.

A



Design Program €——

Desk Check —=> Llogic
errors

Translate to COBOL

COBOL program <€

syntax € Compile

errors

Executable Program

test data=—> Execute———> execution
errors

Working Program

Figure 1.2

Eventually the program will compile, producing an executable
program, which can then be executed with an input file of test data.
The result of this test will most probably be an execution error.
Execution errors can be divided into two categories: run-time errors,
where the program stops because some unexpected condition occurs, and
logic errors, where the program produces the wrong results. To correct
an execution error may involve going back and modifying the COBOL
program, possibly modifying the design as well, recompiling the program
and then executing it again. Alternatively the execution errors may be
caused by incorrect test data which causes unexpected results to be
produced by the program. Once the program successfully processes one
input file it will then need to be tested with other input files, as a
single file of test data s wusually insufficient to test all
possibilities.



2 The Program Design Language

This chapter introduces the design Llanguage which will be wused
throughout the book for the design of algorithms. Initially the
operations of the design language are defined in terms of the 'COROL
computer' described in Section 1.2. These definitions are based on the
particular discipline imposed by the use of a specific COBOL program
structure and ate not definitions of COBOL Llanguage constructs. The
operations are then used to build up some simple programs which are
followed through step by step to illustrate how the operations work.

In the descriptions of the operations anything appearing between the
angle brackets '<' and '>' is a thing which the programmer chooses.
For example get-next=<filename> indicates that an operation can be
defined by substituting the name of a file in place of '<filename>'.
Therefore ‘'get-next-employee' and ‘get-next-order-form' could be
generated for files called 'employee' and 'order-form', respectively.
However, ‘'get—another—employee' and ‘get-employee' <could not be
generated from the pattern get-next-<filename>.

~

2.1 Basic Operations

The operations defined in this section are those which carry out a
simple task without changing the order of execution of operations.

get-next=<filename>
Attempts to read the next record from the input file, called
<filename>, into the input area. If there is no such record then
the condition end-of=<filename> is set to true. Initially end-
of-<filename> is false and the contents of the input area are
undefined.

e.0. get-next-sales
get-next-customer-file

put-<recordname>
Transfers the contents of the area of the data store called
<recordname> to the output file, via the output area. After the
transfer the area defined by <recordname> is then blanked out.
Initially the <recordname> area will be set to all blanks.

e.g. put—-details
put=summary-Line

transfer <item=1> to <item-2>
Copies the value stored in <item=1> to the Llocation called
<item-2>. The contents of <item-1> are unchanged but any
existing value in <item=2> is lost. A special case of this
operation is:



transfer <constant> to <item-2>

where <constant> is a fixed value which is to be stored in the
location <item=-2>.

€.g. transfer total-price to summary-tot-price
transfer 25 to discount-rate
transfer "special customer'" to details-comment

calculate <result-item> = <arithmetic-expression>

The <arithmetic-expression> is evaluated and the result put into
the Llocation called <result-name>. The arithmetic expression
will be made up of the names of storage Llocations, constants,
arithmetic operators: plus, minus, multiply and divide, and
parentheses.

To define the meaning of an arithmetic expression the idea of
an 'order of precedence' 1is required. For example, without a
defined order of precedence it is not possible to say whether the
result of 2 + 3 %4 is equal to 14 or 20. The order of precedence
is defined as:

QO parenthesized expressions
* / multiply and divide
+ - add and subtract

If two or more operators at the same level of precedence
appear in an.expression then they are evaluated from left to
right.

This means that expressions in parentheses are evaluated first,
followed by multiplications and divisions, and finally additions
and subtractions. These rules may need to be applied repeatedly
if expressions contain 'nested' parentheses, that is parentheses
within parentheses ...

€.Q. calculate total-price = sale-price * sale-quantity
calculate discounted-price =
(1 - discount—~rate) * total-price

It should be noted that the equals sign, in this context, means
'becomes equal to' rather than 'is equal to'. Therefore

calculate total-records = total-records + 1

is perfectly sensible and means take the value in the data-item
total-records, add 1 to it and store the result in total-records.

A sequence of basic operations will be executed in the order
written, one after the other from top to bottom. Therefore the
sequences

transfer first—item to second-item
transfer second-item to first—item

will not exchange the contents of first-item and second-item. The
value in first-item will be copied into second-item then this new .value
will be copied back from second-item to first-item, leaving both

7



locations containing the same value: the original value of first-item.

2.2 Selection and Repetition

Before considering the details of the selection and repetition
operations it is necessary to define the conditions which can be used
to control these operations.
Conditions
The conditions which will be allowed initially in selection and
repetition operations fall into two groups. :

The comparative conditions are of the form:

<item-name> <comparison—-operator> <compared-value>

where the <comparison-operator> is one of:

< Lless than not < not less than
> greater than not > not greater than
= equals not = not equal to

and the <compared-value> is either another item-name or a constant.

€.g. sales-quantity < 20
taxable-pay > tax-threshold

emp loyee=-super-code not = "A"

Note that the operators '>' and '<' are not included but are equivalent
to 'not <' and 'not >' respectively.

The file conditions test the current state of the input file and are
of the form:

end-of-<filename> not end-of-<filename>

The condition end-of-<filename> is true if there are no more records
available in <filename> because the last get-next-<filename> failed.
This condition is false after a successful get-next-<filename> or at
the beginning of the program, when no information is available. The
condition not end-of-<filename> is simply the converse of end-of-
<filename>.

€.g. end-of-sales
not end-of-customer-file

Selection

The selection operation has two forms:



if <condition> then if <condition> then

<procedure-1> <procedure-3>
else endif
<procedure-2>
endif
(a) (b)

The selection operation (a) works as follows:

(1) the <condition> is evaluated to give true or false,

(2) if the <condition> is true then carry out <procedure-1>,

(3) if the <condition> is false carry out <procedure-2>,

(4) after selecting the appropriate procedure continue by carrying out
the next operation after endif.

The shortened version of the selection operation, shown in (b)
above, works in a similar way except that when the <condition> is false
the operation does nothing. Therefore <procedure-3> is executed if and
only if the <condition> is true.

The ‘'procedures' specified can be a sequence of one or more basic
operations, or the name of a sequence of operations to be executed (see
2.4) or a mixture of the two.

Examples of selection operations:

if taxable-pay not < tax-threshold then
calculate total-higher-payers = total-higher-payers + 1
higher-tax-routine
else
calculate tax-to-pay = taxable-pay * standard-rate
endif

if house-price > stamp-limit then
add=stamp-duty
endif

Repetition

Initially only one repetition operation will be introduced and it has
the general form:

until <condition> do
<procedure>
enduntil

This operation js defined as follows:

(1) the <condition> is evaluated to true or false,

(2) if the <condition> is true then the operation following enduntil is
carried out,

(3) if the <condition> is false then carry out the <procedure> and
return to step (1) above.

Informally, the <procedure> 1is executed repeatedly wuntil the

9



<condition> becomes true when the operation following enduntil is
executed. If the <condition> is true when the until is first executed
then this whole operation has no effect and the operation following the
enduntil is executed immediately.

The <procedure> specified is similar to that for selection: a
sequence of one or more basic operations, or the name of a sequence of
operations, or a mixture of the two. Ffor example:

until end-of-employee do
calculate-tax o
get-next-employee
enduntil

In this example ‘'calculate-tax' must be the name of a sequence of
operations to he executed.

2.3 Simple Programs

This section discusses some examples of programs to illustrate the
material presented in the preceding two sections.

Example 2.1
A very simple but complete program which does something useful is:

display-sales-records
get—-next-sales
until end-of-sales do
transfer sales—record to printer-Line
put=printer-Line
get-next-sales
enduntil

Here there 1is an input file called 'sales' which contains records
called 'sales-record', and there is an output record called 'printer-
line' which is assumed to belong to a lineprinter file. The program
starts by attempting to get a record from the sales file. If there are
ne records in this file then end-of-sales will be true, the until will
have no effect and the program will terminate.

If there is at least one record in the sales file then end-of-sales
will be false and the operations between until and enduntil will be
repeated until end-of-sales becomes true. The operations inside the
loop simply transfer the current input record to the output record,
transfer the output record to the output file (printing a Lline in this
case) and attempt to get another record from the sales file.

Therefore this simple program will print the entire contents of the
sales file on the Llineprinter, exactly as they appeared in the input
file. In itself this may be occasionally useful but it is important
because it forms the basic framework for a Large number of programs
which read records from an input file, process each record and output
the results.

The indentation shown in the example above is not mandatory but it
is useful for emphasizing the structure of the program.

10



