T

|

= PEARSON
PEARSON

Addison
[Wesley

Exceptonal Co+

47 Engineering Puzzles, Programming
Problems, and Solutions

(SR3ZhR)

=
~

(%) Herb Sutter

g it W OB %

Exceptional C++

(FITHR)

47 Engineering Puzzles, Programming Problems, and Solutions

(32) Herb Sutter =

@m/s&Iﬂtﬂm&

¥ China Machine Press

English reprint edition copyright © 2006 by Pearson Education Asia Limited and
-China Machine Press.

Original English language title: Exceptional C++: 47 Engineering Puzzles, Programming
Problems, and Solutions (ISBN 0-201-61562-2) by Herb Sutter, Copyright © 2000.

All rights reserved. .

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

A 5% CREN AR i Pearson Education Asia Ltd S2AUHLMR Tl AR (3 AR . %
SUHREBET T, FEUERHREHIDEEBANE.

RTFHEARFFEEN (FTEEFEEE. RIMFITEENFRE B)
WERT.

#4534 A Pearson Education (¥AERFHRER) BB RE, THREER
BaE.

R, W,
B EMME AL ML RIS BT

AHRFNEIZE: BFE: 01-2006-0527
EBHBENRE (CIP) MiF

Exceptional C++ (¥3CHR) / (3%) BE#F (Sutter, S.) ¥. —Jb3: BT I HikRH:,
2006. 3

(C++ifitHriE%)

4 3K: Exceptional C++: 47 Engineering Puzzles, Programming Problems, and
Solutions)

ISBN 7-111-18369-X

I1.E- I.BE-- M CEZ-BFRI-XX V. TP312
P ERE BEHCIPHIBEF (2006) £0046842

PLBR T AR (AewEmE B 5 EA#228 MEEH 100037)
gl BiRE

AL EELEDRITENRI - HERBBFLRRTHET
20064E3 A 1R 1 5 ENRI

718mm x 1020mm 1/16 - 14.75E13k

EN#c: 0 001-3 000/}

EHr: 29.005¢

LA, mAERIRN. B, 67, ddigTHiER
ek (010) 68326294

“C++IZiTHBAE” MNPRI=S

B C++iEA: 1 H R ISO/ANSI C++47#E[A] #LA3K, LABjarne Stroustrup 2y #IC++t:
BOH— AR DHESRA “FRE BFEMERCH. EXIEWH, RTHEET
CHUEM TSN, C++IR LRI B ASHELL R 72 I 2 BE | % JB 10 4 B FH 2 9T LA Lk 3417
WEHEMEE. RE. k. EEnERF.

XS B R S A B A BRI AR MR, B,
i, RELLZSTEALNERMEE, URECHEIRE S BT EE i
BAZRBRFERHFHEARZ. ENEBRTHREBRMCHEE, HBXx MR R TS
HHERRE. FHER—AFEENERE. BRER, XEPERRELBIRECHH
PO E 2 TBRR R .

BAMANNY, BIERERSL. REBD. HiFE. RAETE. BARLCE. LEE
REURBRADARESENOEMKEERBRE - NERNEGETLABRR,
EARIE, AR MM R TFRCHITRKF R, Bk, TLURMMB, C++
W9 BRI B AE — BB b AT LAST S Y — A B R Bk ok 7= b R B E R e B .

BT E N B A T — AR BHC+H+BE, SIEETHECHBRRERD
WEF, FAEMARE FAE T KRG TCH+IBE . 2% SR A 5 E R RS
W, IC+HRLMF LR RS T —E0REIER . RTEEENFHES, BEENET,
Tavati RBB IR L MR S, PEKES VLS. TELHRESE MR, X
KT “RERE” WC++BESHMANSLAE SRR, XheRAI
C++HI AR S Tk T M E.

HLIR T olk A 32228 43 3 DRz 4k 4% b E C++ “BRARIL” SFHEULBIHA, M2006
FREFHER N —F ‘CH+IHEHRE” AB. XENBRARS. BENES, ®
fEi%#% 4 B Herb SutterE NWE MM MACHERERMR L. HEZ, WEHE
FBESHACHEME, UKAMDE, FMTRERERE, B ENRBEREE.
PXBREMRAUKKHE. E—FBHxmrEREXEIH, BEEMNTEA. &
A BEABIEEEARRE, RELFECNIBROEAR. HSMEBEARE NI E
C++itBEEABRITE D .

k A
200512 A
M FIFERF

www.royaloo.com

B

ER—FEANS, FTTHEERERZLBBAEIRICRELAFL. XFRER
B—FEHOLBECH+—BEBC+HHI—YI—mIAFNE. NIESHEIREEL
HBEIRBEAR, ZBN—NEEKE S -8, SRERLTEMEHHRE, &
BRRREFLHE . REIAZCHEF—#, KiZIHE EEABMTH, SREBhEF
B AaFHERAN, BREREFRELRERS, REABEAFHER. RBERALBRF
PRI —#, ESktE. EHANSRBEHAERNRILADARR, B4 AKE.

FHiGotW (Guru of the Week) & FH “Gotcha (got you, P BI/RT)" wEEHEA
2. Y3 A CE BN A HORE S £ S5SutterfU & RIEFTHER, BREALSEA
fib (RIC++) REMRMHS, REZL, EHRETRIN. BYROHEN, HILPERES
Herbm # 8K RE: “Gotchal ” HIFH AL RXIEHARMCH+EZH’D, BEAT
EERXEHAC+HHRE R, LETEMRMALRBREREE . RAUA DX R\EMEHC++3E
FTLAER:, fREBU/NLIERSBERIEEBAOER. C++E—TRIBRAMIES, B#
A FRRERTTZIMNRE, REABCLEAIREIES. ERGRRA%SENA
W, EXEE. FEHREFEBZ, NERHEZHEE (RATETHRMH%X),
R BSGLRESH—BZh.

CHFHHMEIZEMIEEL “Guru of the Week” F £ 4HM:, IBLAHLIRAMER
S5EMUEREEAE . REENLEHRETE —&guru, RfiA TEBREEMMIN
W, Y REMIREA K E P H A % guru T BRARG.

Scott Meyers
1999%6 A

——

Al S

Exceptional C-++ 3zt il - [4% Jg /i 4o S5 s vl Sk o LA . A5 i R A L
FiFHIC++E 8 “Guru of the Week” (Sl 5 AHGotW) Ri30ABUERIY FERAS, H+hFE
T H B A bR, “Guru of the Week” & — RIS AC++ LR R AR TR ,
AR T BRI mEE A .

ABHAERARDREOREE, 5 R BLL R CH+ R R T AOfEM .
T I Rk 5 4T, TR Ak R Tl O s — SO i — S IA
I i BAR RS S 5 4 1T G O ER B A R R, R SRk ik i TR A BRI R,
RERAEES R E AN EEEF FLLEFRDE L, LHEERERE. REMK
R & MR ILLL K 4 B i Motk 9 AT R R ACHD

T 7SR % B B R 2R H B TAEA B, Ol A R E A b R B — 2 AR 4 Y
AR A, 3R RABR R AR 2R W, FORak! T 2R
ik TREAL R Z 17

AT BRI A

MR DB 2R T CH+HERANIR, AnRIRERA . AT 4T 43 M0 B v
4##45 (f&Bjarne Stroustrupf) {The C++ Programming Language) (%3) ©HStan
LippmanfilJosée Lajoie) (C++ Primer) (4F3iR) ©iXAFEHIL MR BAIE
B) FFrasl, RIGkiE - ARBRMsHET . FlamScott MeyersfI £ i & {E (Effective
C++) (T kB T BHCDIR A EHLA) ©.

B - REBURE S REIER ZH, HHEE - BRI, aT
Bl

ltem ##. ¥ BAIFRER

Difficulty: X

P FOAE S S Gl M3 ~ 9%, B A10) R EERE 2. R, #E
g LR OUTUR 2 BN A RIEA ZHER E SN, Bk, PRt ir 2 AR
M RS AT R B — A e AR S SHO R E R . TR R, MRER A
© Stroustrup B. The C++ Programming Language, $i3# (Addison Wesley Longman, 1997).,

© Lippman S. and Lajoie J. C++ Primer, 3/ (Addison Wesley Longman, 1998).

® Meyers S. Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs (Addison
Wesley Longman. 1999).] {5 [a]http://www.meyerscd.awl.com$k £3 fE & {5 /Rl -

vii

B A 9—12— R HAKER, BiFEEMBIRBEEE.

 BREEZRBFEIEE—-A/DTRRE, B FEE—SEXREN PR
5", WRATLAE B EAIBAREL “Part 17, “Part 2” %, A& HHELE “Part 10”. &
A R iRX /N R T .

FHBEEREB/IEHH, EXERIFHEE. LT RIEREHEEENRE L

o always: XREHBITLEN ., KZHETFZ.

eprefer: XBHERAERPIFR. REYEFERA E T 242 b A ERHE

FHRe.

* consider: X R[REH ALATREIRA, AAEEBXEE.

cavoid: XEHARBESR, REVRBALK. FRKBRIR, RELEXHER
A& HRPRIEM A X 268

enever: XARFURMEE, MEAEMR, BB ARBIAENSMA.

Bfi, XTURLHELELR—f): EWebl, KHELHkKFHE. LHE, REEKES
Flf—ERNAEEHKHE. XEBEENRFBHE LTIENFEENWeb URLERZE & T HIEARH
. BMEZB T AR ZATILURLRELEN T, EXERSFEERNPE LMES
HZET. YREABLPSIHBABXESIWebd filt, RAEED A SHIWebdhi X
(www.gotw.ca) LRYURLEX —mH— H CHIWebli s R BATREIEHIN, ERE
Ext LR WebBR T EEZ M 8. WRIREABERBAABHIN—-NHELSEER, §E
BRI, BOREHTIZEEE, EHIERFORTLE (MRRD/EERIIZMTAIE),
BELEFRIZMAEAEGEE (MRERBABWIE). FEELB, FHEAURLELRE
ABE, RETEXA Rt R P ENRIE AR FR . neeR

R Fbk: GotW5PeerDirect

C++ “Guru of the Week” RFIEL MK EA. GotWEHEIE F19964E K, AHFKA
H C.7fEPeerDirectf) 7 & FARA R A BAIIR FIAREE BT . RATER A TREEBH®RL
2 TE, BEMEAMREREZRSGHMERAENME. EEMNAGERE, RT
Beh—HTHE, AFRARIMNEARSBC++irkL N ELE#THRZN. NIBLLUS,
GotW 1k 24 B % W 57 i 4 comp. Jang.c++.moderated # & #i H R 3t — M C++ A X FF ik, 7EHD
JLORAT LR B B — A F BRI RIEME R (AR KEEBOE). ’

fEPeerDirect HFC++IEH EE, X 5EMRNA FRFCHNEERE R ZHRINE
B, REERANBRITEHAHE. RNMHEATOGIBIBEMSIBEENMERS
B, EXxBqE, BanTRtk. 2o, TBEY. R, UREMREL VSIS,
TRAEFMKIZE. RINRKRENKGERBBEIAROREBZMRERSE L, 4%
HEBREFFEY. BETFHUARBFREN, CERELL. BE. BEATREE
L T8 8~ Flpop4 5 B PalmOS MIWinCEi% & UM RIS IR, REBE 1% Windows

viii

NT#nLinux. SolarisfR45 2%, ¥ EFEH WebfiR4% 3R 4 EA K HT0racle/5% .
XEERE ARG . RIRHRE, M REEERENER. BE, YERN/HHE
THETFRBAOBEGRAIERGRG Z L, A ERETBEER T Rk,

MFigFEditkIJUERCRIZTEEM L “Guru of the Week” I A, REFHAIE
Eik:

« BRBHRIIAISG . KR, BT Epe:. 5. 4IE. Fit. #LiF. 8], 455088

WA GotW ZFIENfT RBIER. BXRT, HFEWIIER.

 ABAEHNELIREN LETHN LB L.

«Exceptional C++) 3R HEX CLLZIT ML 23 R HI B IHAGotWiLERI IR . BY
AREMBRGFEBOEMLYREE LBITRES, 6, FHSFRKXITHHENRER
LREHAFRANGotWikE P, BEMNERT - MRFI0MEA/NEARY. &—
A EEMBR G RBOLERN, FHEB EESEHERCHIRE.

FrEA, InRARUAABTRGotWHI EMiRE ., ABHPHARERBENFRAE. B—KRMAHE
BEMEZERTRY, FLXOMEEBE RS EE . V RIRAKE: TRMNC++R
BHE.

Brist

B 5 2458 K ifcomp lang.c++.moderated AT EGOtWHIIEZ B L, LR
BE AL BEATRWELE. ARSI SRINEHBLBLABYLE, RERK
i1~ il Marco Dalla Gasperina%tiHt 4 “Enlightened C++”, Rob Stewart[iji
iU HL & “Practical C++ Problems and Solutions”. ¥ FxBRERIARE XL, E4—%
IMABKIE “exceptional” & FHRTIRAT.

JEE BRI AP 54EBjarne Stroustrup, B i#fMarina Lang. Debbie Lafferty) K&
Addison Wesley Longmanf & RiBA R, BB IIXT 0 B SR A S SRS LR E
19984FSanta Cruz C++ir#E &I B FHIABIRI B .

BEERBBREHEBA (KPR DARCHHREZREMER), IR T EZITG
RBEHIPFE, B BEHRBERINEXANSMRERE) . 5 2BiBjame StroustrupFiScott
Meyers, LLJ Andrei Alexandrescu. Steve Clamage. Steve Dewhurst, Cay Horstmann.
Jim Hyslop. Brendan Kehoe. Dennis Mancl, it {i12 THER HFRIVER .

B, MIBRHBEORAFNL, BRENT—EUS RS ER.

Herb Sutter
19996 A

Foreword

This is a remarkable book, but it wasn’t until I had nearly finished reading it that I realized
just how remarkable it is. This could well be the first book ever written for people who are
already familiar with C++—all of C++. From language features to components of the
standard library to programming techniques, this book skips from topic to topic, always
keeping you slightly off balance, always making sure you’re paying attention. Just like
real C++ programs. Class design bumps into the behavior of virtual functions, iterator
conventions run up against name lookup rules, assignment operators sideswipe exception
safety, compilation dependencies cross paths with exported templates. Just like they do in
real programs. The result is a dizzying maelstrom of language features, library compo-
nents, and programming techniques at once both chaotic and magnificent. Just like real
programs.

I pronounce GotW such that it thymes with “Gotcha,” and perhaps that’s fitting. As I
compared my solutions to the book’s quizzes against Sutter’s answers, I fell into the traps
he (and C++) laid before me more often than I’d like to admit. I could almost see Herb
smiling and softly saying “Gotcha!” for each error I made. Some may argue that this
proves I don’t know much about C++. Others may claim it demonstrates that C++ is too
complex for anyone to master. I believe it shows that when you’re working in C++, you
have to think carefully about what you're doing. C++ is a powerful language designed to
help solve demanding problems, and it’s important that you hone your knowledge of the
language, its library, and its programming idioms as finely as you can. The breadth of top-
ics in this book will help you do that. So will its unique quiz-based format.

Veteran readers of the C++ newsgroups know how difficult it is to be proclaimed a
Guru of the Week. Veteran participants know it even better. On the Internet, of course, there
can be only one guru each week, but, backed by the information in this book, you can rea-
sonably hope to produce guru-quality code every time you program.

Scott Meyers
June 1999

Preface

Exceptional C++ shows by example how to go about solid software engineering. Along
with a lot of other material, this book includes expanded versions of the first 30 issues of
the popular Internet C++ feature Guru of the Week (or, in its short form, GotW), a series of
self-contained C++ engineering problems and solutions that illustrate specific design and
coding techniques.

This book isn’t a random grab-bag of code puzzles; it’s primarily a guide to sound real-
world enterprise software design in C++. It uses a problem/solution format because that’s
the most effective way I know to involve you, gentle reader, in the ideas behind the prob-
lems and the reasons behind the guidelines. Although the Items cover a variety of topics,
you’ll notice recurring themes that focus on enterprise development issues, particularly
exception safety, sound class and module design, appropriate optimization, and writing
portable standards-conforming code.

I hope you find this material useful in your daily work. But I also hope you find at least
a few nifty thoughts and elegant techniques, and that from time to time, as you’re reading
through these pages, you'll suddenly have an “Aha! Gnarly!” moment. After all, who says
software engineering has to be dull?

How to Read This Book

I expect that you already know the basics of C++. If you don’t, start with a good C++
introduction and overview (good choices are a classic tome like Bjarne Stroustrup’s The
C++ Programming Language, Third Edition' or Stan Lippman and Josée Lajoie’s C++
Primer, Third Edition®), and then be sure to pick up a style guide like Scott Meyers’ classic
Effective C++ books (I find the browser-based CD version convenient and useful).’

1. Stroustrup B. The C++ Programming Language, Third Edition (Addison Wesley Longman,
1997).

2. Lippman S. and Lajoie J. C++ Primer, Third Edition (Addison Wesley Longman, 1998).

3. Meyers S. Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs (Addison
Wesley Longman, 1999). An online demo is available at http://www.meyerscd.awl.com.

Xi

Each item in this book is presented as a puzzle or problem, with an introductory header
that looks like this:

Item ##: THe Toric ofF THis PuzzLe DirricuLty: X

The topic tag and difficulty rating (typically anything from 3 to 9%, based on a scale of
10) gives you a hint of what you’re in for. Note that the difficulty rating is my own subjec-
tive guess at how difficult I expect most people will find each problem, so you may well
find that a given 7 problem is easier for you than another 5 problem. Still, it’s better to be
prepared for the worst when you see a 9/, monster coming down the pike.

You don’t have to read the sections and problems in order, but in several places there
are “miniseries” of related problems that you’ll see designated as “Part 1,” “Part 2,” and so
on—some all the way up to “Part 10.” Those miniseries are best read as a group.

This book includes many guidelines, in which the following words usually carry a spe-
cific meaning:

= always = This is absolutely necessary. Never fail to do this.

= prefer = This is usually the right way. Do it another way only when a situation specifi-
cally warrants it.

= consider = This may or may not apply, but it’s something to think about.

= avoid = This is usually not the best way, and might even be dangerous. Look for alter-
natives, and do it this way only when a situation specifically warrants it.

= never = This is extremely bad. Don’t even think about it. Career limiting move.

Finally, a word about URLs: On the Web, stuff moves. In particular, stuff I have no
control over moves. That makes it a real pain to publish random Web URLS in a print book
lest they become out of date before the book makes it to the printer’s, never mind after it’s
been sitting on your desk for five years. When I reference other people’s articles or Web
sites in this book, I do it via a URL on my own Web site, www.gotw.ca, which I can con-
trol and which contains just a straight redirect to the real Web page. If you find that a link
printed in this book no longer works, send me e-mail and tell me; I’1l update that redirector
to point to the new page’s location (if I can find the page again) or to say that the page no
longer exists (if I can’t). Either way, this book’s URLs will stay up to date despite the rig-
ors of print media in an Internet world. Whew.

3. Meyers S. Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs (Addison
Wesley Longman, 1999). An online demo is available at http://www.meyerscd.awl.com.

How We Got Here: GotW and PeerDirect

The C++ Guru of the Week series has come a long way. GotW was originally created late in
1996 to provide interesting challenges and ongoing education for our own development
team here at PeerDirect. I wrote it to provide an entertaining learning tool, including rants
on things like the proper use of inheritance and exception safety. As time went on, I also
used it as a means to provide our team with visibility to the changes being made at the C++
standards meetings. Since then, GotW has been made available to the general C++ public as
a regular feature of the Internet newsgroup comp.lang.c++.moderated, where you can find
each new issue’s questions and answers (and a lot of interesting discussion).

Using C++ well is important at PeerDirect for many of the same reasons it’s important
in your company, if perhaps to achieve different goals. We happen to build systems soft-
ware—for distributed databases and database replication—in which enterprise issues such
as reliability, safety, portability, efficiency, and many others are make-or-break concerns.
The software we write needs to be able to be ported across various compilers and operating
systems; it needs to be safe and robust in the presence of database transaction deadlocks
and communications interruptions and programming exceptions; and it’s used by custom-
ers to manage tiny databases sitting inside smart cards and pop machines or on PalmOS
and WinCE devices, through to departmental Windows NT and Linux and Solaris servers,
through to massively parallel Oracle back-ends for Web servers and data warehouses—with
the same software, the same reliability, the same code. Now that’s a portability and reliabil-
ity challenge, as we creep up on half a million tight, noncomment lines of code.

To those of you who have been reading Guru of the Week on the Internet for the past
few years, I have a couple of things to say:

» Thank you for your interest, support, e-mails, kudos, corrections, comments, criti-
cisms, questions—and especially for your requests for the GotW series to be assembled
in book form. Here it is; I hope you enjoy it.

= This book contains a lot more than you ever saw on the Internet.

Exceptional C++ is not just a cut-and-paste of stale GorW issues that are already float-
ing out there somewhere in cyberspace. All the problems and solutions have been consid-
erably revised and reworked—for example, Items 8 through 17 on exception safety
originally appeared as a single GorW puzzle and have now become an in-depth, 10-part
miniseries. Each problem and solution has been examined to bring it up to date with the
then-changing, and now official, C++ standard.

So, if you've been a regular reader of GorW before, there’s a lot that’s new here for
you. To all faithful readers, thanks again, and I hope this material will help you continue to
hone and expand your software engineering and C++ programming skills.

Acknowledgments

First, of course, thanks to all the GorW readers and enthusiasts on comp_lang.c++.moder-
ated, especially the scores of people who participated in the contest to select a name for
this book. Two in particular were instrumental in leading us to the final title, and I want to

xiii

thank them specifically: Marco Dalla Gasperina for suggesting the name Enlightened
C++, and Rob Stewart for suggesting the name Practical C++ Problems and Solutions. It
was only natural to take these a step further and insert the pun exceptional, given the
repeated emphasis herein on exception safety.

Many thanks also to series editor Bjare Stroustrup and to Marina Lang, Debbie Laf-
ferty, and the rest of the Addison Wesley Longman editorial staff for their continued inter-
est and enthusiasm in this project, and for hosting a really nice reception at the Santa Cruz
C++ standards meeting in 1998.

I also want to thank the many people who acted as reviewers—many of them fellow
standards-committee members—who provided thoughtful and incisive comments that
have helped to improve the text you are about to read. Special thanks to Bjarne Stroustrup
and Scoq Meyers, and to Andrei Alexandrescu, Steve Clamage, Steve Dewhurst, Cay
Horstmann, Jim Hyslop, Brendan Kehoe, and Dennis Mancl, for their invaluable insights
and reviews.

Finally, thanks most of all to my family and friends for always being there, in so many
different ways.

Herb Sutter
June 1999

Contents

Foreword
Preface

Generic Programming and the C++ Standard Library
Item 1: Iterators

Item 2: Case-Insensitive Strings—Part 1

Item 3: Case-Insensitive Strings—Part 2

Item 4: Maximally Reusable Generic Containers—Part 1

Item 5: Maximally Reusable Generic Containers—Part 2

Item 6: Temporary Objects

Item 7: Using the Standard Library (or, Temporaries Revisited)

Exception-Safety Issues and Techniques
Item 8: Writing Exception-Safe Code—Part 1
Item 9: Writing Exception-Safe Code—Part 2
Item 10: Writing Exception-Safe Code—Part 3
Item 11: Writing Exception-Safe Code—Part 4
Item 12: Writing Exception-Safe Code—Part 5
Item 13: Writing Exception-Safe Code—Part 6
Item 14: Writing Exception-Safe Code—Part 7
Item 15: Writing Exception-Safe Code—Part 8
Item 16: Writing Exception-Safe Code—Part 9
Item 17: Writing Exception-Safe Code—Part 10
Item 18: Code Complexity—Part 1

Item 19: Code Complexity—Part 2

Class Design and Inheritance
Item 20: Class Mechanics
Item 21: Overriding Virtual Functions

25
26
30
32
37
39
45
50
52
55
58

63

69
69
75

Item 22: Class Relationships—Part 1
Item 23: Class Relationships—Part 2
Item 24: Uses and Abuses of Inheritance
Item 25: Object-Oriented Programming

Compiler Firewalls and the Pimpl idiom
Item 26: Minimizing Compile-time Dependencies—Part 1
Item 27: Minimizing Compile-time Dependencies—Part 2
Item 28: Minimizing Compile-time Dependencies—Part 3
Item 29: Compilation Firewalls

Item 30: The “Fast Pimpl” Idiom

Name Lookup, Namespaces, and the Interface Principle

Item 31: Name Lookup and the Interface Principle—Part 1
Itemn 32: Name Lookup and the Interface Principle—Part 2
Item 33: Name Lookup and the Interface Principle—Part 3
Item 34: Name Lookup and the Interface Principle—Part 4

Memory Management

Item 35: Memory Management—Part 1
Item 36: Memory Management—Part 2
Item 37: auto_ptr

Traps, Pitfalls, and Anti-ldioms
Item 38: Object Identity.

Item 39: Automatic Conversions

Item 40: Object Lifetimes—Part 1

Item 41: Object Lifetimes—Part 2

Miscellaneous Topics

Item 42: Variable Initialization—Or Is It?
Item 43: Const-Correctness

Item 44: Casts

Item 45: boo]

Item 46: Forwarding Functions

Item 47: Control Flow

Afterword
Blbllographyl

Index

XV

80
83
88
97

99
102
106
109
111

119
119
122
130
133

141
141
144
150

161
161
164
165
167

175
175
177
184
189
192
194

203
205

207

Generic Programming and the
C++ Standard Library

To begin, let’s consider a few selected topics in the area of generic programming. These
puzzles focus on the effective use of templates, iterators, and algorithms, and how to use
and extend standard library facilities. These ideas then lead nicely into the following sec-
tion, which analyzes exception safety in the context of writing exception-safe templates.

Item 1: ITERATORS Dirricurty: 7

Every programmer who uses the standard library has to be aware of these common and not-so-
common iterator mistakes. How many of them can you find?

The following program has at least four iterator-related problems. How many can you find?

int main()
{
vector<Date> e;
copy(istream_iterator<Date>(cin),
- istream_iterator<Date>(),
back_inserter(e));
vector<Date>::iterator first =
find(e.begin(), e.end(), "01/01/95");
vector<Date>::iterator last =
find(e.begin(), e.end(), "12/31/95");
*last = "12/30/95";
copy(first,
last,
ostream_iterator<Date>(cout, "\n"));
e.insert(--e.end(), TodaysDate());
copy(first,
last,
ostream_iterator<Date>(cout, "\n"));

Generic Programming and the C++ Standard Library

int main(Q)
{
vector<Date> e;
copy(istream_iterator<Date>(cin),
istream_iterator<Date>(),
back_inserter(e));

This is fine so far. The Date class writer provided an extractor function with the signa-
ture operator>>(istream&, Date&), which is what istream_iterator<Date> uses to
read the Dates from the cin stream. The copy() algorithm just stuffs the Dates into the
vector.

vector<Date>::1iterator first =

find(e.begin(), e.end(), "01/01/95");
vector<Date>::iterator last =

find(e.begin(), e.end(), "12/31/95");
*last = "12/30/95";

Error: This may be illegal, because Tast may be e.end() and therefore not a derefer-
enceable iterator.

The find() algorithm returns its second argument (the end iterator of the range) if the
value is not found. In this case, if “12/31/95” is not in e, then 1ast is equal to e.end(),
which points to one-past-the-end of the container and is not a valid iterator.

copy(first,
last,
ostream_iterator<Date>(cout, "\n"));

Error: This may be illegal because [first,last) may not be a valid range; indeed,
first may actually be after 1ast.

For example, if “01/01/95” is not found in e but “12/31/95” is, then the iterator last
will point to something earlier in the collection (the Date object equal to “12/31/95”) than
does the iterator first (one past the end). However, copy () requires that fi rst must point
to an earlier place in the same collection as 1ast—that is, [first,1ast) must be a valid
range.

Unless you’re using a checked version of the standard library that can detect some of
these problems for you, the likely symptom if this happens will be a difficult-to-diagnose
core dump during or sometime after the copy ().

e.insert(--e.end(), TodaysDate());

First error: The expression “--e.end()” is likely to be illegal.
The reason is simple, if a little obscure: On popular implementations of the standard
library, vector<Date>: :iterator is often simply a Date*, and the C++ language doesn’t

