Surveys
in Computer
Science

S.Ceri G.Gottlob L.Tanca.
Logic Programming
and Databases

BIRRE IRt EUREE [

; Springer-Verlag
% World Publishing Corp

S.Ceri G.Gottlob L.Tanca

- Logic Programming
and Databases

With 42 Figures

Springer-Verlag
World Publishing Corp

Stefano Ceri

Dipartimento di Matematica
Universita di Modena

Via Campi 213

1-41100 Modena

Georg Gottlob

Institut fiir Angewandte Informatik
und Systemanalyse

Abteilung fiir Verteilte Datenbanken
und Expertensysteme

Technische Universitit Wien
Paniglgasse 16/181

A-1040 Wien

Letizia Tanca

Dipartimento di Elettronica
Politecnico di Milano

Piazza Leonardo Da Vinci 32
1-20133 Milano

ISBN 3-540-51728-6 Springer- Verlﬁg Berlm Hexdelberg New York
ISBN 0-387-51728-6 Spnnger-Verlég New York Berlin Heidelberg

Library of Congress Cataloging-in- Pubhcauon Data.

Ceri, Stefano, 1955-

Logic programming and databases / S. Ceri. G Gottlob, L. Tanca. p. cm. -
(Surveys in computer science)

Includes bibliographical references.

ISBN 0-387-51728-6 (U.S.)

1. Logic programming. 2. Data base management. I. Gottlob. G. (Georg).

1I. Tanca, L. (Letizia). III. Title. IV. Series. QA76.63.C47 1990 005.74 — dc20
89-28960 CIP

This work is subject to copyright. All rights are reserved. whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting. reproduction on microfilms or in other
ways, and storage in data banks. Duplication of this publication or parts thereof is
only permitted under the provisions of the German Copyxight Law of September 9,
1965, in its version of June 24, 1985, and a copyright fee must always be paid. Viola-
tions fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1990

Reprinted by World Publishing Corporafion, Beijing, 1992
for distribution and sale in The People’s Republic of China only
ISBN 7-5062-1127- @

Preface

The topic of logic programming and databases has gained in-
creasing interest in recent years. Several events have marked
the rapid evolution of this field: the selection, by the Japanese
Fifth Generation Project, of Prolog and of the relational data
model as the basis for the development of new machine archi-
tectures; the focusing of research in database theory on logic
queries and on recursive query processing; and the pragmatic,
application-oriented development of expert database systems
and of knowledge-base systems. As a result, an enormous amount
of work has been produced in the recent literature, coupled with
the spontaneous growth of several advanced projects in this area.

The goal of this book is to present a systematic overview of a
rapidly evolving discipline, which is presently not described with
the same approach in other books. We intend to introduce stu-
dents and researchers to this new discipline; thus we use a plain,
tutorial style, and complement the description of algorithms with
examples and exercises. We attempt to achieve a balance be-
tween theoretical foundations and technological issues; thus we
present a careful introduction to the new language Datalog, but
we also focus on the efficient interfacing of logic programming
formalisms (such as Prolog and Datalog) with large databases.

The book is divided into three parts, preceded by two prelimi-
nary chapters. Chapter 1 offers an overview of the field. Chapter
2 discusses those aspects of the relational model and Prolog which
.are required for understanding the rest of the book. Of course,
Chapter 2 is not a complete tutorial on these fields; it just rede-
fines terminology, notation, and basic concepts in order to keep
the book self-contained. However, in order to fully understand
the problems, the reader should have some background in these
subjects.

Part I is devoted to the coupling of Prolog with relational
databases. Chapter 3 presents Prolog as a query language, ap-
plied to the formulation of two classical problems, the anti-trust
-and the bill-of-materials problems. Chapter 4 describes the al-
‘ternative architectures and tetinIques for coupling a Prolog sys-

Vi Preface

tem to a relational database. Chapter 5 presents a review of the
major current projects and prototypes for coupling Prolpy and’
relational databases.

Part II is devoted to the precise definition of the Datalog lan-
guage. Chapter 6 defines formally the syntax and semantics of
Datalog. The semantics of Datalog is described by a nonproce-
dural, model-theoretic approach. Chapter 7 presents the proof
theory of the language, by introducing an algorithm for evaluat-
ing Datalog goals, and by showing that the method is sound and
complete with respect to the model-theoretic semantics. Chap-
ter 7 also introduces two other paradigms for the evaluation of
Datalog programs: fizpoint theory and backward chaining. In par-
ticular, resolution and SLD-resolutlon are deﬁned in the context
of Datalog. : -

Part III is devoted to the description of query optimization -
techniques for Datalog. Chapter 8 presents a general classification
of the optimization techniques; we distinguish rewriting methods,
which assume as input a Datalog program and produce.as output
an optimized Datalog program, from evaluation methods, which
assume as input a Datalog program and produce the result of the
query. Furthermore, we show a simple.translation from Datalog
programs to systems of algebraic equations. This translation en-
ables us to describe a class of algebraic methods for query op-
timization. These arguments are then studied in the subsequent
Chapters 9 and 10. Chapter 9 deals with evaluation methods,
and presents both bottom-up and top-down evaluation methods
(including the Naive, Semi-naive, and Query-Subquery meth-
.ods). Chapter 10 deals with rewriting methods, and presents the
logical rewriting methods (including the Magic Set, Counting,
and the Static Filtering methods) and the algebraic rewriting

methods.

Chapter 11 deals with extensions to pure Datalog, such as sets
and negation. This chapter should be considered as an introduc-
tion to the'subject, rather than a full treatment. Finally, Chapter
12 presents-an overview of the main projects on the integration
of logic programming and databases, mcludmg Nail, LDL, and
the anth Generation Project.

The book 1is organized so that the three parts can be read
independently by different readers In fact, the various chapters
are rather independent.

This book does not present a full overview of all topics which
belong to the field of deductive databases. For instance, it does

Preface vl

not deal with incompleteness, disjunctive data, or the validation
of integrity constraints. We apologize to those who find their
favorite topics missing, in particular the community of logicians
who work in the area of deductive databases. In the choice of
arguments, we have concentrated our attention on the use of iarge
databases; loyal to the tradition of the database community, we
are mainly concerned with the efficiency of database access, even .
when we use logic programming as a query language.

This book .is primarily the outcome of research work con-
ducted by the authors in cooperation with other colleagues. We
wish to thank Gio Wiederhold for his contribution to the CGW
approach, which was developed in the framework of the KBMS
project at Stanford University; Stefano Crespi-Reghizzi, Gian-
franco Lamperti, Luigi Lavazza, and Roberto Zicari, for their
contribution to the development of the algebraic approach to
logic queries within the framework of the ALGRES project; Sil-
via Cozzi, Fabrizio Gozzi, Marco Lugli, and Guido Sanguinetti,
who developed the PRIMO system as part of their diploma the-
ses at the University of Modena; and Roberta Cantaroni, Stefa-
nia Ferrari, and Franca Garzotto, who have addressed with us
problems rela.ted to logic databases

Many colieagues and students have produced useful comments
in extending, reviewing, and correcting the manuscript; among
them, we wish to thank Maurice Houtsma, who has made a
very careful reading, suggesting several corrections and improve-
ments; Hervé Gallaire, Jean-Marie Nicolas, Johann Christoph
Freytag, and Frangois Bry, who have provided useful information
concerning the entire manuscript and more specifically about
the projects developed at ECRC; Shamin Naqvi has also made
specific comments about the LDL project developed at MCC;
Wolfgang Nejdl has provided us with material about the QSQ
method and its modifications. Werner Schimanovich and Alex
Leitsch have helped us with encouragement and interesting dis-
cussions.

Particular appreciation is given to Gunter Schlageter and to
his PhD students and to Renate Pitrik, Wilhelm Rossak, and
Robert Truschnegg, whose careful reading and critical review
has improved the quality of the book. Rernaining errors and
omissions are, of course, the responsibility of the authors.

We would like to thank our home institutions for providing
support and equipment for editing this manuscript: the Univer-
sity of Modena, the Politecnico di Milano, the Technical Uni-
versity of Wien, and Stanford University. During the prepara-
tion of the manuscript, Letizia Tanca was supported by a grant
fromn C.LL.E.A. The accurate and fast final preparation of this

Vil Preface

manuscript has been supervised by Dr. Hans Wossner, Ingeborg
Mayer, and the copy editor Dr. Gillian Hayes, from Springer-
Verlag.

The “Progetto Finalizzato Informatica e Calcolo Parallelo”
of the Italian National Research Council, starting in 1989, will
provide us with a research environment for realizing many of the
ideas presented in this book.

October 1989 Stefano Ceri
Georg Gottlob
" Letizia Tanca

Table of Contents

Chapter 1

Logic Programming and Databases: An Overview
1.1 Logic Programming as Query Language
12 Prologand Datalog
1.3 Alternative Architectures
14 Applications
1.5 BibliographicNotes.
Chapter 2

A Review of Relational Databases and Prolog
2.1 Overview of Relational Databases.
2.1.1 The Relational Model
2.1.2 Relational Languages
2.2 Prolog: A Language for Programming in Logic
2.3 BibliographicNotes.

Part I Coupling Prolog to Reiational

Databases. v,
Chapter 3

Prolog as a Query Language:....
3.1 The Anti-Trust Control Problem
3.2 The Bill of Materials Problem
33 Conclusions. it
34 BibliographicNotes.
35 EXEICISes vttt

X Table of Contents

Chapter 4
Coupling Prolog Systems to Relational Databases

4.1 Architectures for Coupling Prolog

and Relational Systems
4.1.1 Assumptions and Terminology
4.1.2 Componentsof a CPR System
4.1.3 Architectureof CPR Systems
42 BaseConjunctions
4.2.1 Determining Base Conjunctions in LCPR Systems . .
4.2.2 Improving Base Conjunctions in TCPR Systems . . .
4.3 Optimization of the Prolog/Database Interface e
4.3.1 CachingofData........................
4.3.2 Caching of Data and Queries.
43.3 Useof Subsumption
434 CachingQueries .,
4.3.5 Parallelism and Pre-fetching in Database Interfaces .
44 Conclusions.coviuuno...
4.5 BibliographicNotes.
46 Exercises0 00000 e

Chupter 5

Overview of Systems for Couplmg Prolog
- to Relational Databases L.

51 PRO-SQL.........
52 EDUCEiiiiiniiinnnn..
53 ESTEAM i, .
54 BERMUDA e e e

"85 CGWand PRIMO e e
56 QUINTUS-PROLOG
5.7 BibliographicNotes.

Part II Foundations of Datalog

Chayter 6 o »
Syntax and Semantics of Datalog

6.1 Basic Definitions and. Assumptlons UM
6.1.1 Alphabets, Terms, and Clauses
6.1.2 Extensiopal Databases and Datalog Programs
6.1.3 Substitutions, Subsumption, and Umﬁca.t)on e

6.2 The Model Theory of Datalog 86
6.2.1 Possible Worlds, Truth, and Herbrand Interpretations 86
6.2.2 The Least Herbrand Model 91
6.3 Conclusions.oomuuserennnnnn 92
6.4 BibliographicNotes. 92
65 Exercisesottt 93
Chapter 7
Proof Theory and Evaluation Paradigms of Datalog 94
7.1 The Proof Theory of Datalog 94
7.1.1 FactInference 95
7.1.2 Soundness and Completeness

of the Inference Rule EP. 98
7.2 Least Fixpoint Iteration 101
7.2.1 Basic Results of Fixpoint Theory 101
7.2.2 Least Fixpoints and Datalog Programs 104
7.3 Backward Chaining and Resolution 107:
7.3.1 The Principle of Backward Chaining 107
732 Resolution 113
Td Conclusions.ccuuuunin.. 120
7.5 BibliographicNotes. 121
7.6 Exercises0ciiiiiinnnnan 121

Table of Contents -~ XI

Part III Optimization Methods for Datalog . . 123

Chapter 8
Classification of Optimization Methods for Datalog 124

8.1

8.1.1
8.1.2
8.1.3
8.1.4
8.2
8.3
8.4
8.5
8.6
8.7

Criteria for the Classification

of Optimization Methods 124
Formalism........................... 124
Search Strategy 125
Objectives of Opti-aization Methods 126
Type of Information Considered 126
Classification of Optimization Methods 127
Translation of Datalog into Relational Algebra . .. 130
Classification of Datalog Rules. 136
The Expressive Power of Datalog 142
Bibliographic Notes. e 143

Exercisesnuu e 144

Xii Table of Contonts

Chapter 9

¥valustion Methods e 145
9.1 Bottom-up Evaluation 145
9.1.1 Algebraic Naive Evaluation 145
9.1.2 Semi-naive Evaluation. 150
9.1.3 The Method of Henschen and Naqvi. T... 154
9.2 Top-down DSvaluation 155
.21 Query-Subquery 155
.22 The RQA/FQIMethod 160
9.3 Bibliographic Notes 161
9.4 Exercises 162

Chapter 10

Rewriting Methods e 163
10.1 Logical Rewriting Methods 163
10.1.1 MagicSets 165
10.1.2 The Counting Method 174
10.1.3 The Static Filtering Method 177
10.1.4 Semi-naive Evaluation by Rewriting 183
10.2 Rewriting of Algebraic Systems............. 185
10.2.1 Reduction to Union-Join Normal Form 185
10.2.2 Determiration of Common Subexpressions 187
10.2.3 Query Subsetting and Strong Components. ., 189
10.2.4 Marking of Variables 191
10.2.5 Reduction of Variables 193
10.2.6 Reductionof Constants 193
10.2.7 Summary of the Algebraic Approach 200
10.3 A General View of Optimization 200
10.4 BibliographicNotes 205
10.5 Exercises 206
Chapter 11

Extensions of Pure Datalog 208
11.1 Using Built-in Predicates in Datalog 210 .
11.2 Incorporating Negation into Datalog 211
11.2.1 Negation and the Closed World Assumption 212
11.2.2 Stratified Datalog 215
11.2.3 Perfect Models and Local Stxatxﬁcatxon 224
11.2.4 Inflationary Semantics and Expressive Power 226

Table of Contents | Lii

11.3 Representation and Manipulation

of Complex Objects 225
11.3.1 Basic Featuresof LDL 224
11.3.2 Semantics of Admissible LDL Programs. 2334
11.3.3 Data Models for Complex Objects 240
114 Corclusions. 241
11.5 Bibliographic Notes. 24
11,6 Exercises 244
Chapter 12
Overview of Research Prototypes for Integrating
Relational Databases and Logic Programming 246
12.1 The LDL Project 247
12.2 The NAIL! Project 255
12.3 The POSTGRES Project 255
12.4 The FIFTH GENERATION Project 257
125 The KIWIProject 260
12.6 The ALGRES Project 262
12.7 The PRISMA Project 264
12.8 BibliographicNotes. 265
Bibliography 267

Chapter 1

Logic Programming and Databases:

An Overview
<

This book deals with the integration of logic programming and databases to
generate new types of systems, which extend the frontiers of computer science in
an important direction and fulfil the needs of new applications. Several names
are used to describe these systems:

a) The term deductive database highlights the ability to use a logic programming
style for expressing deductions concerning the content of a database.

b) The term knowledge base management system (KBMS) highlights the ability
to manage (complex) knowledge instead of (simple) data.

c) The term ezpert database system highlights the ability to use expertise in a
particular application domain to solve classes of problems, but having access
over a large database.

The confluence between logic programming and databases is part of a general
trend in computer science, where different fields are explored in order to discover
and profit from their common concepts. . :

Logic programming and databases have evolved in parallel throughout the
seventies. Prolog, the most popular language for PROgramming in LOGic, was
born as a simplification of more general theorem proving techniques to provide
efficiency and programmability. Similarly, the relational data model was born
as a simplification of complex hierarchical and network models, to enable set-
oriented, nonprocedural data manipulation. Throughout the seventies and early
eighties, the use of both Prolog and relational databases has become widespread,
not only in academic or scientific environments, but also in the commercial world.

- Important studies on the relationships between logic programming and rela-
tional databases have been conducted since the end of the seventies, mostly from
a theoretical viewpoint. The success of this confluence has been facilitated by the
fact that Prolog has been chosen as the programming language paradigm within
the Japanese Fifth Generation Project. This project aims at the development of

. the so-called “computers of the next generation”, which will be specialized in

the execution of Artificial Intelligence applications, hence capable of performing
an extremely high number of deductions per time unit. The project also includes
the use of the relational data model for storing large collections of data.

The reaction to the Japanese Fifth Generation Project was an incentive to
research in the interface area between logic programming and relational data-
bases. This choice indicated that this area is not just the ground for theoretical
investjgations, but also has great potential for future applications. :

2 Chapter 1 Logic Programming and Databases: An Overview

By looking closely at logic programming and at database ma.xiagement, we
discover several features in common:

a) DATABASES. Logic programming systems manage small, single-user, main-
memory databases, which consist of deduction rules and factual information.
Database systems deal instead with large, shared, mass-memory data collec-
tions, and provide the technology to support efficient retrieval and reliable
update of persistent data.

b) QUERIES. A query denotes the process through which relevant information
is extracted from the database. In logic programming, a query (or goal) is
answered by building chains of deductions, which combine rules and factual
information, in order to prove or refute the validity of an initial statement. In
database systems, a query (expressed through a special-purpose data manip-
ulation language) is processed by determining the most efficient access path
in mass memory to large data collections, in order to extract relevant. infor-
mation.

c) CONSTRAINTS. Constraints specify correctness conditions for databases.
Constraint validation is the process through which the correctness of the data-
base is preserved, by preventing incorrect data being stored in the database. In
logic programrming, constraints are expressed through general-purpose rules,
which are activated whenever the database is modified. In database systems,
only a few constraints are typically expressed using the data definition lan-
guage.

Logic programming offers a greater power for expressing queries and constraints

as compared to that offered by data definition and manipulation languages of

database systems. Furthermore, query and constraint representation is possible
in a homogeneous formalism and their evaluation requires the same inferencing
mechanisms, hence enabling more sophisticated reasoning about the database
content. On the other hand, logic programming systems do not provide the
technology for managing large, shared, persistent, and reliable data collections.
The natural extension of logic programming and of database management con-
sists in building new classes of systems, placed at the intersection between the two
fields, based on the use of logic programming as a query language. These systems
combine a logic programming style for formulating queries and constraints with
database technology for efficiency and reliability. of mass-memory data storage.

1.1 Logic Programming as Query Language

We give an informal presentation of how logic programming can be used as a
query language. We consider a relational database with two relations:

PARENT(PARENT,CHILD), and PERSON(NAME,AGE,SEX).

The tuples of the PARENT relation contain pairs of individuals in parent-child
relationships; the tuples of the PERSON relation contain triples whose first,

1.1 Logic Programming as Query Langnage 3

PARENT PERSON

PARENT CHILD NAME AGE SEX
john jeff paul 7 male
jeff margaret john 78 male
margaret annie Jeff 55 male
john anthony margaret 32 female
anthony bill annie 4 female
anthony Jjanet anthony 58 male
mary Jeff bill 24 male
claire ball Jjanet 27 female
janet paul mary 75 female
claire 45 female

Fig. 1.1. Example of relational database

second, and third elements are the person’s name, age, and sex, respectively. We
assume that each individual in our database has a different name. The content
of the database is shown in Fig.1.1.

We express simple queries to the database using a logic programming language.
We use Prolog for the time being; we assume the reader has some familiarity
with Prolog. We use two special database predicates, parent and person with the
understanding that the ground clauses (facts) for these predicates are stored
in the database. We use standard Prolog conventions on upper and lower case
letters to denote variables and constants. For instance, the tuple <john, jeff> of
the database relation PARENT corresponds to the ground clause:

parent(john, jeff).

The query: Who are the children of John? is expressed by the following Prolog
goal: ‘

v ? ~ parent(john, X).
The answer expected from applying this query to the database is:
X = {jeff, anthony}.

Let us consider now which answer would be given by a Prolog interpreter, op-
erating on facts for the two predicates parent and person corresponding to the
database tuples; we assume facts to be asserted in main memory in the order
shown above.

4 Chaptexl 1 Logic Programming and Databases: An Overview

The answer is as follows: After executing the goal, the variable X is first set
equal to jeff; if the user asks for more answers, then the variable X is set equal
to anthony; if the user asks again for more answers, then the search fajls, and
the interpreter prompts no. Note that Prolog returns the result one tuple at a
time, instead of returning the set of all result tuples.

The query: Who are the parents of Jeff? is expressed as follows:

? - parent(X,jeff).
The set of all answers is:
= {john,mary}.

Once again, let us consider the Prolog answer: After executing this goal, the
variable X is set equal to john; if the user asks for more answers, then the.
variable X is set equal to mary; if the user asks again for more answers, then
the search fails.

We can also express queries where all arguments of the query predlca.te are
constants. For instance:

? - parent{john,jeff).

In *his case, we expect a positive answer if the tuple <john, jeff> belongs to the
database, and a negative answer otherwise. In the above case, a Prolog system
would produce the answer yes.

Rules can be used to bunild an Intensional Database (IDB) from the Extensional
Databose [EDB). The EDB is simply a relational database; in our example it
includes the elations PARENT and PERSON. The IDB is built from the EDB
by applying 1ules which define its content, rather than by explicitly storing its
tuples. In the following, we build an IDB which includes the relations FATHER,
MOTHER, GRANDPARENT, SIBLING, UNCLE, AUNT, ANCESTOR, and
COUSIN. Intuitively, all these relationships among persons can be built from
the two EDB relations PARENT and PERSON.

We start by defining the relations FATHER and MOTHER, by indicating
simply that a father is a male parent and a mother is a female parent:

father(X,Y) : — person{X, ., male), parent(X,Y).
mother(X,Y) . — person(X, -, female), parent(X,Y).

As a result of this definition, we can deduce from our sample EDB the IDB
shown in Fig. 1.2

Note that here we are presenting the tuples of the IDB relations as if they
actually existed: in fact, tuples of the IDB are not stored. One can regard the
two rules father and mother above as view definitions, i.e., programs stored in the
database which enable us to build the tuples of father starting from the tuples
of parent and person.

The IDB can be queried as well; we can, for instance, formulate the query:
Who is the mother of Jeff %, as follows:

7 - mother(X jeff).

1.1 Logic Programming as Query Language

L]

FATHER MOTHER
FATHER CHILD | MOTHER CHILD
john Jeff margaret annie
jeff margaret mary jeff
Jjohn " anthony ciaire bill’
dnihoﬁy ' bl . janet paul

anthony Jjanet

Fig.1.2. The IDB relations FATHER and MOTHER

With a Prolog interpreter, after the execution of this query X is set equal
to mary. Notice that the interpreter does not evaluate the entire IDB relation
MOTHER in order to answer the query, but rather it finds just the tuple which
contributes to the answer.

We can proceed with the definition of the IDB relations GRANDPARENT,
SIBLING, UNCLE, and AUNT, with obvious meanings:

grandparent(X,Z) : — parent(X,Y), parent(Y, Z).

sibling(X,Y) : — parent(Z,X), parent(2,Y), not(X =Y).
uncle(X,Y) : — person(X, -,male), sibling(X, Z), parent(Z,Y).
aunt(X,Y) : — person(X, -, female), sibling(X, Z), parent(Z,Y).

Complex queries to the EDB and IDB can be formulated by building new
rules which combine EDB and IDB predicates, and then presenting goals for
those rules; for instance, Who is the uncle of a male nephew? can be formula.ted
as follows: -

query(X) : — uncle(X,Y), person(Y,-,male).
? — query(X).

More complex IDB relations are built from recursive rules, i.e., rules whose
head predicate occurs in the rule body (we will define recursive rules more
precisely below). Well-known examples of recursive rules are the ANCESTOR
relation and the COUSIN relation.

The ANCESTOR relation includes as tuples all zmcestor-descendent pairs,
sta.rtmg from parents.

ancestor(X,Y) : — parent(X,Y).
ancestor(X,Y) : — parent(X, Z), ancestor(Z,Y).

The COUSIN relation includes as tuples either two children of two siblings,
or, recursively, two children of two previously determined cousins.

