I T R-O0ODURE T T ON TO0

Microcomputer Programming
PETER ROB

Introduction to
Microcomputer
Programming

Peter Rob

Professor of Information Systems
Middle Tennessee State University

Wadsworth Publishing Company
A Division of Wadsworth, Inc.
Belmont, California

Computer Science Editor: Frank Ruggirello
Production Editor: Leland Moss

Managing Designer: Detta Penna

Designer: Edith Allgood

Cover Designer: Stephen Rapley

Cover Photograph: Dow, Clement & Simison
Copy Editor: Susan Thornton

Technical Illustrator: Evanell Towne
Cartoons © 1983 Rand Renfroe

¢ 1984 by Wadsworth, Inc. All rights reserved. No part of this book may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means, electronic, mechanical, pho-
tocopying. recording, or otherwise, without the prior written permission of the publisher,
Wadsworth Publishing Company, Belmont, California 94002, a division of Wadsworth. Inc.

ISBN 0-534-03184-6

Printed in the United States of America

345678910 — 88878685

Library of Congress Cataloging in Publication Data

Rob, Peter.
Introduction to microcomputer programming.

Includes index.

1. Microcomputers-—Programming. 2. Basic (Computer
program language) 1. Title.
QA76.6.R62 1984 001.64'2 83-23267
ISBN 0-534-03184-6

Preface

Unless you are a confirmed masochist, you must have some compelling
reasons for undertaking the long and difficult task of writing a textbook. So
many selections abound—why not just pick one? However, as I evaluated the
available textbooks for an introductory BASIC microcomputer programming
course, I found it difficult to find any with the desired attributes.

An introductory programming text should not strive to develop instant
professional programmers. Yet, if the text’s expectations are too low, students
are not likely to gain useful programming skills. Most books I reviewed sacrifice
programming proficiency at the altar of simplicity. I have written this text to
correct that mistake, without losing sight of the nature of an introductory
programming course.

As you examine this book, you will notice several uncommon features.
Each feature is designed to help guide the student to greater programming
proficiency without posing an unacceptable degree of difficulty. These features
include:

1. Programming techniques that are 6. Appendixes containing system

easily adaptable to IBM PC, the commands and examples of their
APPLE II, and the TRS-80 use on the IBM PC, the APPLE
2. Greater topical coverage II, and the TRS-80
3. Greater depth of coverage 7. Detailed summaries and
4. Extensive sample quizzes with comparisons of sequential and
answers random access file procedures for
5. Expandable programming the IBM PC and the APPLE 11
problems

Adaptable Programming Techniques

Novice programmers are frequently frustrated when they discover that their
programming techniques do not work very well on different microcomputer
systems. This book helps decrease that frustration by introducing the student
to three of the most popular microcomputers—the 1BM PC, the APPLE 11,
and the TRS-80. Although the program examples are all done on the IBM PC,
notes for APPLE II and TRS-80 programmers are highlighted where appropriate.

System-specific programming techniques are avoided where possible.
However, files and high resolution graphics are unavoidably system-specific.
Therefore, separate file chapters exist for the APPLE Il and the IBM PC. (The
TRS-80 files are, for all practical purposes, identical to those of the PC.) In
addition, the high resolution graphics chapter is divided into two sections, one
each for the IBM PC and the APPLE II.

PREFACE

Greater Topical Coverage

Among other important functions, computers can organize and present numer-
ical information, ranging from teachers’ grade summaries to various business
reports. Because such reports are often best generated on the basis of two-
dimensional arrays, this text includes a chapter on that subject.

The ability to create programs that make extensive use of subroutines
is a hallmark of good programming technique. Both subroutines and ON . . .
GOSUB techniques are discussed, presented, and used, especially in con-
junction with simulations and files. Subroutines are also used in connection
with menu-driven programs.

The ability to store and retrieve information is an especially useful
aspect of computer use, and both sequential and random access (direct
access) files are covered in this book. In order to make file creation and manip-
ulation easier to understand, the nature of files, fields, and records is explored
in greater detail than is common in most introductory BASIC programming
texts. Numerous file options are covered as well, including the creation of files,
deleting or adding records from or to files, changing records in files, and
transferring records between files.

Since a picture is often worth a thousand words, the book presents
high resolution graphics procedures for both the IBM PC and the APPLE
I1. Coverage goes beyond fundamental graphics commands to show applications
like frequency plots. Given the difficulty of combining high resolution graphics
with text on the APPLE Il screen, the chapter includes a discussion of how to
use subroutines that define numbers and letters as “binary” strings.

Although most introductory BASIC programming texts include some
discussion of random numbers generators, this text covers more application
areas. Simulation is covered through elementary Monte Carlo methods, and a
simple example of computer-aided instruction is shown, using random num-
bers to create a computer-scored arithmetic quiz.

Greater Depth of Coverage

This text demonstrates that, even within a simple framework, a useful level of
programming proficiency can be attained. Consequently, discussions, pro-
gramming examples, and problems often probe into more realistic applications.
For example, sequential and random access file programs are written to be
menu-driven, incorporating in a single program the ability to create, delete,
add to, or correct files.

Computer-generated reports tend to be more realistic and show greater
detail and capability than is common in introductory BASIC programming
texts. The use of two dimensional arrays, coupled with variable TAB functions,
allows the user to compute, format, and print row/column totals, subtotals, and
grand totals.

Other programming topics are covered in similar detail, using simu-
lation results, graphics-based summaries, and so on. The relatively higher level
of programming sophistication is attained partially because the text introduces
programming principles, style, and examples in a gradual, unhurried manner.
Although this conversational writing style increases the book’s length, such
an approach offers the freedom to explore topics in greater depth without
becoming cumbersome or threatening.

Extensive Sample Quizzes With Answers

At the end of each chapter a multiple choice/true—false quiz provides quick
feedback to students. Quiz questions deal primarily with programming tech-
niques and are sufficiently challenging to provide a realistic evaluation of the
material learned in each chapter.

PREFACE

Expandable Programming Problems

Problem sets provide a sense of direction and the recognition that the student
is gaining significant programming expertise. Many problems done in one chap-
ter reappear in a more sophisticated format in subsequent chapters, designed
to create a useful level of programming expertise. For example, a very simple
program that only adds two numbers may expand into a program that uses a
random number generator to select the values to be added. In a later chapter
a scoring device and, finally, a random access file is added to the program to
store the results. At this point the programming student has developed a pro-
gram that can test an elementary school student’s arithmetic, providing each
student with a unique test, scoring the test, storing the test results, and, if
necessary, printing a grade report for each student in the file. If the program-
ming student happens to be an elementary school teacher, the usefulness of
the microcomputer has surely been demonstrated.

Similarly, a frequency plot is initially based on given frequency data.
The student is then shown how to let the computer generate the frequency
distributions. Finally, the high resolution graphics chapter demonstrates yet
another use for the frequency plot.

Appendixes Containing System Commands

While system users manuals are very informative, many students either have
no access to—or no interest in—the highly detailed examination of specific
microcomputer systems. This book, therefore, contains an appendix for each
major microcomputer system: IBM PC, APPLE II, and TRS-80. The appendix
covers such topics as how to turn the computer on, how to initialize a disk,
how to name programs, and how to use system commands such as SAVE,
LOAD, LIST, DELETE (KILL), and RUN.

Summaries of Sequential/Random Access File Procedures

Writing file programs can be very frustrating, since such programs contain so
many unusual and very specific features. To diminish such frustration, this
text provides a summary, with examples, of the most important file procedures,
such as opening a file, closing a file, getting data from a file, putting data into
a file, and so on.

Acknowledgments

Writing a textbook is an exciting, yet long and often painful task. To start
writing a textbook is easy enough; to finish it requires the help and under-
standing of many (often unsung) heroes. Among the important contributors
to the successful completion of this text is Dr. William J. Grasty, who chairs
the department of accounting and information systems at Middle Tennessee
State University. Bill Grasty was always willing to let me experiment with
course materials, often providing the necessary encouragement to make writing
a less painful process. He also scheduled my courses and sections in order to
help create blocks of writing and programming time. In addition, he helped
locate several truly outstanding assistants who transformed my midnight scrib-
bling to the typed manuscript.

My first assistant, Betsy Garmany, helped produce the initial rough
draft of this text. Her expertise on the word processor and her constant good
cheer are hereby gratefully acknowledged. Ms. Garmany’s many outstanding
qualities were easily recognized by a very fortunate employer, causing her
retirement from this project.

Many thanks to Lisa Northcutt, who produced the remainder of the
book’s first draft and who helped me through the first (and many other) rewrites.
Ms. Northcutt’s ability to juggle schedules and her willingness to work overtime

xii

PREFACE

made it possible for me to meet the many deadlines that authors are heir to.
Her very agile mind made the word processor perform miracles. Without her,
this book would possibly still be a two-foot-high pile of scribbles and computer
printouts.

Two additional student assistants provided important help in trans-
forming the book's rough draft into the finished product. Tambra W. Peters
assumed the difficult task of typing the computer listings in Chapter 13 and in
Appendix D, in addition to doing some of the final editing. Jeanne D. Williams
used her considerable expertise in word processing to help make many of the
final corrections. Meeting the numerous deadlines would have been impossible
without their contributions.

The light touch in this book is provided by Rand Renfrew, whose
outstanding cartooning skills drive programming points home or provide the
often therapeutic chuckle. Rand’s familiarity with programming and its appar-
ently inevitable “bugs” has created the sense of “Yes, I've been there.” Many
thanks to him for contributing his art.

How can I sufficiently thank the many readers whose critiques were
so useful in reshaping the initial efforts? Their contributions range from fer-
reting out typographical errors to questions dealing with continuity, program
logic, and pedagogical worth. Most of these readers will find their suggestions
and recommendations incorporated in the text. The contributions of the fol-
lowing are hereby gratefully acknowledged: Professors Michael Cox, Golden
West College; Bernard Eisenberg, Kingsborough Community College, New
York; Dave Hart, Weber State, Utah; Sister M. K. Keller, Clarke College, lowa;
Norman Licht, S.U.N.Y. at Pottsdam; Leonard Presby, William Patterson Col-
lege; Leona Roen, Oakton Community College, Illinois; Fred Snyder, Bryant
and Stratton Institutes, Powelson, New York; and Richard Tangeman, Arkan-
sas State University.

Surely no author could be more indebted to a publisher. Frank Rug-
girello, Senior Editor at Wadsworth, is truly one of the class acts in the pub-
lishing business. Frank pushed this project (and its author) to the limit, pro-
viding talent and resources to get the job done right and on time. Judith
McKibben, developmental editor, provided a sense of direction and numerous
writing suggestions. Suzanna Brabant channeled a constant stream of letters
and phone calls, each dealing with some important aspect of the writing process.
Leland Moss and Detta Penna, as well as others on a fine production staff,
transformed the final edited manuscript into an attractive textbook.

Finally, my wife Anne’s contributions are hereby gratefully acknowl-
edged. Her numerous comments and suggestions are all reflected in these
pages. Her sense of humor has helped keep all events (and especially those
many deadlines!) in proper perspective. During the past 22 years she has grace-
fuily endured numerous industrial consulting crises, research deadlines, and,
with this text, the many hours of proofreading. Without her, much of what I
do would not be worth doing. I therefore dedicate this book to my wife and

best friend, Anne.
Peter Rob

Table of Contents

Preface ix

1 About Those
Microcomputers 1

2 Some Basics
About BASIC 13

3 Expanding Programming
Horizons 33

4 Conversations with the
Micro 50

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4

What Is a Computer? 1

Why We Need to Know About Computers 2
What Is a Microcomputer? 3

Gaining Access to a Microcomputer System 5
Memory 5

Storage Devices 6

How Does the Microcomputer Work? 8
Recommended Reading 9

Chapter Review 10

Numeric Values and Strings 13

Variables and Constants 14

The First Program 16

The PRINT Command 17

Numbering the Program Lines: A Word of Advice 19
Multiple Statements 20

Simple Mathematical Manipulations 24

Chapter Review 27

Flowcharts 33

IF Statements: Giving the Computer Choices 34
REMark Statements 38

Mathematical Comparisons 39

GOTO Commands: Loops and Counters 41
Chapter Review 44

Talking to the Micro: The INPUT Command 50
Applying the INPUT/Response Sequence 53
Saving Data 54

Reading More Than One Variable 58

TABLE OF CONTENTS

10

11

FOR NEXT Loops and
Subscripts 69

Complex Calculations and
Output Formatting 94

Nested Loops and Their
Applications 124

Two-dimensional
Arrays 151

Much More About
Strings 174

Using Subroutines 205

Random Numbers and
Simulation 224

4.5

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6

7.1
1.2
7.3

8.1
8.2
8.3

9.1
9.2
9.3
9.4

10.1
10.2
10.3

11.1
11.2
11.3
11.4

The RESTORE Command 60
Chapter Review 62

Loops 69

Subscripts: The Array 75

Control of Output Spacing with the TAB Function 81
Chapter Review 87

More About Common Mathematical Procedures 94
Applications of the Rules of Mathematical Precedence 96
Rounding 101

Computer Graphing 106

The PRINT USING Function 110

Numeric Variable Precision Defined on the IBM PC and TRS-80 114
Chapter Review 115

Looking at Nested Loops 124
Organizing Numerical Information 129
Improving Program Flexibility 134
Chapter Review 141

The Two-dimensional Array 151

Nested Loop Procedures 155

‘Work with Several Two-dimensional Arrays 160
Chapter Review 168

Strings Revisited: Making Comparisons 174
String Functions and Commands 177
Concatenation: Adding Strings 189

String Sorting into Alphabetical Order 193
Chapter Review 196

Subroutines and Why They Are Used 205

The ON . . . GOSUB Command 210
Subroutines and Structured Programming 214
Chapter Review 215

Random Numbers: Why Are We Interested? 224
Effects of Random Numbers Seed Selection 226
Generation of Random Integers 230
Introduction to Simulation:

Some Applications of Random Numbers 233
Chapter Review 241

12 Sequential and 12.1
Random Access Files: 12.2
APPLEIl 251 :

12.3
12.4

13 Sequential and 13.1
Random Access Files: 13.2
IBM PC and TRS-80 284 :

13.3
13.4
13.5

14 High Resolution 14.1

Graphics 319 14.2

14.3

14.4

15 Commercial Software 356 15.1
15.2

15.3

15.4

Appendix A Using the IBM-PC 365

Appendix B Using the TRS-80 369

Appendix C Using the APPLEIl 372

Appendix D Answers to the Exercises

Index/Glossary 401

TABLE OF CONTENTS

Defining File Terminology 251

Writing a Sequential File Program:

Some Fundamental Procedures 254
Writing a Random Access File Program 267
Processing Data in Files 274

Chapter Review 276

Reviewing File Terminology and Structure 284
Creating IBM PC Sequential Files 287

Processing Data Stored in Files 292

Creating IBM PC Random Access Files 301
Processing Data Stored in Random Access Files 305
Chapter Review 313

Using the IBM PC High Resolution Screen 320
Plotting a High Resolution Frequency Distribution

on the IBM PC 326

Using the APPLE Il High Resolution Screen 336
Plotting a Frequency Distribution on the APPLE 11 340
Chapter Review 346

Commercial and Homegrown Software 356
Microcomputers and Word Processing 357
Data Base Management Systems (DBMS) 360
Spreadsheets 362

Chapter Review 364

375

vii

About Those
Microcomputers

OBJECTIVES

1. To describe the nature and
characteristics of microcomputers
2. To define and describe commonly
used technical terms

3. To discuss the basic components
of a microcomputer

4. To discuss, in general terms, the
operation of a microcomputer

5. To describe the nature and
function of a computer program

6. To introduce a computer
programming language known as
BASIC

Do You THINK COMPUTERS
ARE HERE To STAY ?

This chapter answers four main questions: Why study computers? What are
the components of a microcomputer? How does a microcomputer work? What
is computer programming, and why use BASIC as a computer language?

B What Is a Computer?

In a fundamental sense, a computer is a piece of equipment that performs
computations. So, of course, does a calculator. What distinguishes a computer
from a calculator is that whereas a calculator requires “prompting” from a
human being each time a calculation is performed, a computer can perform
thousands, hundreds of thousands, or even millions of calculations without
direct human intervention. The most important distinction is that a computer
can perform logical operations that require making choices among alternatives.
It is this feature that makes the computer useful in so many different applications.
A computer does not, of course, have an inborn ability to make choices.
It must be given a set of detailed instructions, called a program, on how to
respond under different circumstances. This text will teach you how to write
programs. Mastering this skill can be exciting, especially when we can make a
computer perform exactly according to our designs and specifications. In addi-

ABOUT THOSE MICROCOMPUTERS

tion, learning to program is a helpful discipline because it encourages us to be
logical in approaches to problems. Programming, in fact, may turn out to be
one of the most satisfying learning experiences.

Uses of a Computer

Suppose that you want to teach someone a bit of arithmetic known as addition.
When this student adds two numbers, the result may be correct or incorrect.
If the answer is incorrect, the value may be too high or too low. The student
can use a computer to check his or her answer against one that the computer
can calculate, and the computer can then evaluate the difference, if any, between
the two answers.

The use of the computer as a teaching tool is thus based on its ability
to compare a user-supplied answer to its own. For example, if the student were
to add the values 2 and 4, the answer should be 6. If, in fact, he or she did
answer 6, the computer might respond by giving the message YOU ARE RIGHT.
If, on the other hand, the student had answered 5, the computer might respond
by printing the message NO, YOUR ANSWER IS TOO LOW. WANT TO TRY
AGAIN? Similarly, if the answer had been 8, the response might be NO, YOUR
ANSWER IS TOO HIGH. WANT TO TRY AGAIN?

The computer’s ability to make choices among alternatives can also
be applied to industry. For instance, a computer may be instructed to monitor
the operating temperatures of a piece of manufacturing equipment. Is the
current operating temperature within defined acceptable limits? If the answer
is NO, the computer may shut the equipment down, or it may increase the
cooling rates. If the answer is YES, the computer may check to see if there is
an upward trend in the operating temperature. If there is such a trend, the
computer may take action to correct the problem before it becomes critical.
Such applications—and much more complicated ones—are all possible because
a computer can make logical choices among alternative courses of action. It
is, therefore, the ability to make choices that makes the computer so unique
and so powerful.

Why We Need to Know About Computers

It is important to realize that not only can computers do much but that they
are already doing it! Computers and computer applications are all around us.
Computers keep our bank balances, monitor jet engine fuel flows, check for
unsafe conditions in manufacturing plants, help design products we use, draw
pictures, play games, make sculptures, teach concepts, and perform diagnos-
tic checks on our cars as well as our bodies. Perhaps even more important, as
the number of computers and computer applications increase rapidly, com-
puter costs decrease dramatically. Small, easy-to-use, yet powerful computers
known as microcomputers are available in 1984 for less than $2,000. In many
respects, these low-cost computers do more than the very large and complex
computer systems did in the 1960s at a cost of millions of dollars. And the trend
continues: In 1984 lower-powered microcomputers can even be purchased for
less than $100.

Apart from the direct computer applications listed above, computers
perform tasks that may be even more important to us in the future. Computers,
with their incredible ability to store, process, and interpret information, can
create information networks; compare, match, or link records; and perform
the millions of manipulations that we demand in our quest for meaning in the
information. There may be a darker side to this use of computers, as well.
Information can be misused, the concepts of science can be misapplied. As the

WHAT IS A MICROCOMPUTER?

number of computers multiplies, the potential for abuse increases. But what-
ever our hopes and fears, they will not be buoyed or alleviated by ignoring the
computer revolution. The computer is here to stay, touching virtually all our
lives: We really do not have a choice about becoming acquainted with it.

Learning About Computers

There are two approaches to learning about computers. We may choose to
study the equipment itself, to see how and why it functions. Or we may
concentrate on learning how to use computers. This book, as its title suggests,
focuses on the second approach. Yet we cannot remain ignorant of the basic
components of the computer. Many of us will probably buy small computers,
and we need to be able to evaluate both the equipment and our needs in simple
terms. How, for example, would you interpret an advertisement describing a
small computer with “64 Kb RAM, 5 Mb internal storage, and 2 disk drives™?
What is a CRT? How could we determine whether we needed a disk drive? Such
terms are explored briefly in this chapter to help us become better informed
computer consumers.

Programming

While there are many computer programming languages, we will concentrate
on a language known as BASIC (Beginner’s All-purpose Symbolic Instruction
Code). BASIC was developed in the mid-sixties by Dr. John Kemeny and Dr.
Thomas Kurtz at Dartmouth College. Relatively few demands were placed on
the new computer language; its primary use was educational, and its primary
advantage was simplicity. Since 1965, BASIC has grown from its modest begin-
ning to become a powerful and very popular computer language. In fact, BASIC
is probably the most widely used computer language in the world.

Despite its growth in popularity and power, BASIC has managed to
retain its simplicity. It is still relatively easy to learn. Beyond simplicity, how-
ever, there are better reasons to study BASIC. First, it has become a language
capable of complex manipulations. Second, and probably more important, BASIC
is used almost exclusively by microcomputers.

What Is a Microcomputer?

A microcomputer is a “computer on a chip.” The chip, which may be only
a fraction of an inch square, contains all of the electrical circuits that allow
the microcomputer to perform both arithmetic (add, subtract, multiply, and
divide) and logical operations (compare and conclude). Such a chip is called a
microprocessor.

The Microprocessor

Physically, a microprocessor is a single integrated circuit etched on a thin
wafer (chip) made of silicon, the primary component of beach sand. The silicon
used to manufacture the chip is, of course, a highly refined substance. The
integrated circuit is a complex collection (circuit) of very small electronic
components that control on/off switches. The circuit is called integrated because
all of the necessary components that need to work together (in other words,
integrated) are located on a single chip. The position of various combinations
of on/off switches allows the computer to process and “remember” information.

The microprocessor’s very fine circuits must be connected to an elec-
trical source. Therefore, the microprocessor is embedded in a piece of plastic

ABOUT THOSE MICROCOMPUTERS

with prongs attached to it. The combination of microprocessor and its “bed”
is known as a dual inline package, or DIP. Both microprocessors and DIPs
are illustrated in Figure 1.1. A microcomputer may consist of a single chip
embedded in a single DIP. Most microcomputers are composed of a collection Microprocessors
of DIPs connected to a printed circuit card, or board. Technically speaking,
then, a microcomputer is a computer whose central processing unit is a
microprocessor.

The Central Processing Unit

The central processing unit (CPU) is, in a sense, the computer’s central
nervous system, directing its activities. The CPU actually has two functions.
The portion of the CPU that provides the arithmetic/logic function, known as
the ALU, does the actual computing. The second function of the CPU controls
activities in the various portions of the computer. The CPU’s second portion
is, therefore, called the control unit (CU). The CU is, in effect, a switching
center that directs various programming commands and information flows to
appropriate sections of the computer.

However, not all microcomputers use the same brand of micropro-
cessor. For example, the TRS-80 microcomputer uses a Z80 microprocessor,
the Commodore 64 uses an MCS6510, the IBM PC uses an 8088, and so on.
Various microcomputers use different operating systems, all of which direct
the computer’s activities.

The collection of computer commands that operates the CU is known
as the operating system. The operating system that “manages” the computer
is generally a collection of programs supplied by a manufacturer. The different
microcomputer operating systems may be accessed by using specific BASIC =
commands. We will discover, therefore, that BASIC is not standard on all D D D DDDD
systems. Each system may use its own BASIC “dialect.” DDDDDDD

DDD DDDDDDDDDU
MMMW

A Note About System-Specific Programming

Given the existence of different BASIC dialects, we could elect to write com-

puter programs that use certain commands that are tailored precisely to the

system being used. When we write a program specifically designed for a par-

ticular system, we refer to such a program as system-specific. Because sys-

tem-specific programs cannot be modified easily to run on other systems,

system-specific programming is not always a good practice. Fortunately, unless

we try to access very specialized microcomputer functions such as graphics and

file management, we can write programs so that the differences between the

BASIC dialects are relatively minor. If we learn to write our programs carefully,

the same BASIC codes can usually be used on different systems. In fact, all the

programs in Chapters 2—11 were tested on microcomputer systems as radically

different as the APPLE II and the IBM PC. Only rarely did the programs require

any modification. So, although there is no single standard BASIC language,

we can still learn to write programs that are understood by mest microcomputers.
Nonetheless, the lack of standard operating systems can occasionally

be very bothersome, especially when we are dealing with the files that store Figure 1.1

and access information. However, many modern mlcrocon?puters have adopted MICROPROCESSORS AND DIPs

a control system known as CP/M (control program for microcomputers). The

CP/M system was designed by Digital Research for microcomputers that use

microprocessors known as the 8080, the Z80, the 8085, and their derivatives.

Language differences among the various CP/M-based microcomputers tend to

be minor. Although the APPLE II uses a non-CP/M system, it can be modified

by inserting a CP/M board containing the appropriate microprocessors. How-

3 C L __F

Computer

MEMORY

ever, since most APPLE Il microcomputers have not been modified, this text
contains occasional programming commands designed for Apple II program-
mers, as well as a separate chapter on files.

Gaining Access to a Microcomputer System

The Keyboard

Microcomputers are very small computers; indeed, the word micro means “very
small.” The actual computer itself may be only a fraction of an inch square!
The microcomputer looks bigger than that, of course, because humans must
be able to access it through a keyboard, which must be relatively large because
of our big fingers. Since we send information into the computer via the key-
board, the keyboard is also referred to as an input device.

The CRT Screen and Printer

The results of the computer’s activities are monitored by a TV screen, called a
CRT (cathode ray tube) or a VDT (video display terminal). The screen has to
be large enough to be read easily. Because the information coming out of the
computer is shown on the CRT, we usually refer to a CRT as an output device.
If we want a permanent copy of the output shown on the CRT, we can attach
a printer to the system. The printer, too, is called an output device. When we
see the abbreviation 1/0, we should realize that I refers to input, and O refers
to output. Therefore, the keyboard (input) and the CRT or the printer (output)
are often described as /0 devices.

Memory

Thus far, we have described a computer system that consists of these components:

1. Central processing unit (CPU), 2. Keyboard (input device)
composed of a control unit (CU) 3. CRT (VDT) and/or printer
and an arithmetic/logic unit (output device/s)

(ALU)

Unfortunately, we still do not have a functioning microcomputer because we
lack several important pieces of equipment, the most significant being the
memory, where the actual computing work will be done. The memory consists
of two parts: the random access memory (RAM) and the read only memory
(ROM). The RAM is so named because its contents may be accessed in any
(random) order. We can both read information from and write information
into the RAM. The ROM, on the other hand, is not as flexible. We can only
read information from the ROM; we cannot write information into it. And
because all of the information in the ROM was installed in the computer factory
(firm), the ROM is referred to as firmware.

Measuring the Memory

The amount of work that can be done by the microcomputer depends on how
large the memory is. Therefore, if we want to evaluate the microcomputer’s
capabilities, we must be able to measure both RAM and ROM capacity, that is,
how much information can be stored in the memory at one time. The unit of
measurement is determined by the way a computer “codes” information.

n ABOUT THOSE MICROCOMPUTERS

In its simplest sense, a computer consists of a large number of switches
that may be turned on or off. The combination of on/off switches represents a
value, a letter, or a symbol. Since there are only two switch positions for each
switch (on or off), we can represent the off position using the value zero (0)
and the on position by the value one (1). Each of these two digits (0,1) is called
a binary digit, or bit. (The word bi means “two.”) A unit of eight bits forms
one byte. Each byte represents a single memory location in the computer's
memory that is capable of holding a single character of information, such as
the number 5 or the letter T. Each combination of on/off switches, in other
words, is a code that represents a letter, number, or symbol. To avoid confusion
about which code will represent which character, letter, or number, a code
has been standardized, called the American Standard Code for Information
Interchange (ASCII).

For review purposes, let us summarize the main features of RAM and
ROM capacity measurement:

1. Characters are coded by using binary digits (bits).
2. Eight bits together form one byte.
3. Each byte can hold one character in memory.

RAM and/or ROM capacity is measured in thousands of bytes, or kilo-
bytes (K or Kb). (The word kilo, incidentally, means “thousand.”) Therefore,
a micro with an advertised RAM of 48K would have 48,000 bytes available,
allowing storage of up to 48,000 characters in the memory at one time. Actually,
1,000 is only a convenient measuring rod: The computer’s RAM really contains
1,024 bytes per kilobyte, so 48K represents 48 x 1,024 = 49,152 bytes. Before
celebrating this “extra” memory, we must recognize that sometimes not all of
the RAM is available to store information as well as instructions for manipu-
lating that information. The computer’s central processing unit (CPU) may
use some of the available RAM to perform its various controlling functions.
Nevertheless, a RAM value of 48K is a good general estimate of what is available.
The RAM capability, incidentally, is growing very rapidly; micros now boast
64K RAM, 128K RAM, and even 256K and higher RAM values. One word of
caution, however: When you see an advertisement for “64K memory chips,”
you should realize that the individual chip capacity is measured in terms of
bits rather than bytes; remember, it will take eight 64K chips to make 64K
bytes of RAM.

The definition of bit also allows us to evaluate microprocessor capa-
bility. Many of the older microcomputers were of the 8-bit variety. Most newer
microcomputers have 16-bit microprocessors, which allow a much higher
processing speed than the 8-bit microprocessors. A few microprocessors are
even designed with a 32-bit capacity.

B Storage Devices

Our microcomputer system is at this point composed of the following components:

1. Central processing unit (CPU), a 2. Memory (RAM and ROM)

microprocessor composed of a 3. Keyboard (input device)
control unit (CU) and an 4. CRT and/or printer (output
arithmetic/logic unit (ALU) device)

Although these four components will allow us to start computing, one final
piece of equipment is indispensable. The microcomputer cannot permanently

ted 160

o o® 0o o

Cassette Tape

Diskette
Permanent Content Write protect
label label notch
\ \ \

N AN \J

2

Spindle hole Sector hole

Read/write notch

Lin\er Exposed diskette surface
~
N
AN
\
\\
//—\
/ N |
[[J l
\ / |
\ N 7 /
\ /
\ /
\ /
AN /
~N e
~ ~— o g
Figure 1.2

MICROCOMPUTER TAPE AND DISKETTE

STORAGE DEVICES

“save” any information we place in the RAM because the RAM is volatile; that
is, if we turn the computer off, the information in the RAM is lost forever. (It
has evaporated, so to speak.) Quite naturally, if we have spent hours behind
the keyboard typing information and instructions, we will quickly lose interest
in computing when we discover that all our efforts can be lost that easily.
Therefore, we need a storage device that can save the RAM contents perma-
nently. Such storage devices, shown in Figure 1.2, are generally tapes, or
disks.

Cassette Tapes

Microcomputer tapes are usually the same tapes that we use in cassette recorders.
In fact, many microcomputers can actually use the same cassette recorders
that we use to play recorded music. For several reasons, however, tapes are
not very desirable for computing.

1. Information retrieval from tape tends to be very slow. For example, if a
specific piece of information is located 15 ft from the current tape
position, we must wait until the tape cassette has wound the tape to the
desired position. We cannot jump directly to the desired location.

2. The inability to jump back and forth to different tape positions means
that many of the microcomputer’s best features cannot be used. One of
those features involves an information storage and retrieval system known
as the direct access file, discussed in Chapters 12 and 13. The term direct
access implies an ability to go directly to a given information position.
Since we cannot jump directly to specific information locations when we
are using tape, we cannot use direct access files.

3. Tapes sometimes tend to record information incorrectly because of noise
distortion. The tape drive’s volume selection position can become a
matter of costly experimentation.

4. Tapes can and do break: Splicing broken tapes can be very damaging to
the information stored on them.

5. Finally, tapes can hold only a limited amount of information compared to
a disk. For these reasons, many modern microcomputers tend to be
designed around the ability to use disk rather than tape storage.

Diskettes

The disk system of information storage and retrieval is, when compared to
tape, very efficient. We can access information on a disk directly; storage capac-
ity is great and becoming greater; the disk is not subject to noise distortion;
and disks do not break as tapes do. On the other hand, disks can be damaged
easily if handled roughly. In addition, the cost of the device that spins the disk
(the disk drive) tends to be high in comparison to the cost of the cassette
recorder. Nevertheless, the extra cost is usually offset by the benefits of using
the disk drive.

Microcomputers are designed to have special capabilities when har-
nessed to disk drives. In fact, the disk operating system (DOS) is so important
that microcomputers tend to have separate DOS manuals to help the user tap
the vast powers of the microcomputer more efficiently.

The most common disk drives use 5% in. flexible disks known as floppy
diskettes, “floppies,” or just plain diskettes. The diskettes consist of a flexible
plastic disk covered with a fine coating of ferrous oxide on which characters
such as letters, numbers, or symbols can be deposited magnetically. A typical
diskette is shown in Figure 1.2. The diskette’s main identifying features include
the following:

