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Preface to the First Edition

Computational methods form an increasingly important part of the undergraduate curricu-
lum in physics and engineering these days. This book is mainly concerned with the ways
that computers may be used to advance a student’s understanding of physics. A la.rge part
of the material is common to engineering as well.

The subject matter covered in this volume may be classified also under the title of

“computational physics.” There are several ways to organize the material that should be
included. The choice made here is to follow the traditional approach of mathematical
physics. That is, the chapters and sections are grouped around methods, with physical
problems used as the motivation and examples. One attractive alternative is to group
around physical phenomena. The difficulty of following this way of organization is the
heavy reliance on the physics background of the readers, thus making it harder to follow for
students at early stages of their education. For this reason, such an approach is rejected.

The intimate relation between physics and mathematics may be seen by the way that
physics is usually taught in the undergraduate curriculum. With a knowledge of calculus,
for example, the subject of mechanics is discussed in a more rigorous manner. By the
time the student is introduced to differential equations, topics such as harmonic oscillators
and alternating current circuits, are brought in. Long experience in the community has
shown this way of teaching to be very successful. The major problem here is the delay
in introducing certain other basic concepts, because of the need to acquire first a certain
maturity in mathematics. The fault is not with the mathematics required but the way it is
used. For example, discussions on a pendulum are usually limited to small amplitudes at the
early years. For finite amplitudes, the differential equation is nonlinear and the necessary
skill to solve such equations by analytical methods comes only in later years. On the other
hand, it is possible to use the same numerical methods to solve both types of differential
equations for the pendulum problem and they are no more difficult than analytical methods.
In this way, the discussion on pendulum does not have to be limited to small amplitude
oscillations.

Until quite recently, the mathematics required in undergraduate physics and engineer-
ing, to a large extent, consists of analytical techniques to manipulate algebraic equations,
to carry out integrals, and to solve simple differential equations. In addition to these “alge-
braic” methods, there is also a large class of numerical approaches that can be used to solve
physical problems. While it is true that computers have made numerical calculations pop-
ular, many of the methods have their origins with the same group of mathematicians as the
algebraic methods, such as Gauss and Newton. In the intervening years since the introduc-
tion of these mathematical techniques, numerical calculations have lost out to “algebraic”
ones, perhaps because of the tedium of carrying out numerical calculations by hand. This
reason is certainly no longer true, as attested by the explosion of numerical solutions in
research papers. In spite of its popularity in research, the introduction of computational
physics to the undergraduate syllabus is only starting.

ix



X Preface to the First Edition

To carry out numerical calculations on a computer, the usual practice is to write one or
more programs in one of the high-level languages, such as FORTRAN or C. To simplify the
process, one may make use of standard subroutine libraries to take over specific tasks, such
as inverting a determinant or diagonalizing a matrix. In contrast, the general approach
to algebraic computation is to make use of one of the symbolic manipulation packages.
Most of these packages are very powerful and are able to carry out a large variety of
complicated calculations. Although a substantial amount of “programming” can be done
in most cases, the symbolic manipulation instructions are not programming languages on
the same level as, for example, FORTRAN or C. Furthermore, there has been little attempt
to standardize the instructions between different packages. As a result, any discussions of
algebraic calculations in a volume on computational methods must either be very abstract
or very specific in terms of one of these packages. The choice made here is the former, as it
is not clear what is available to the average reader.

The results obtained from computer calculations often appear in the form of a large
table of numbers. For human beings to comprehend such huge quantities of information,
graphical presentations are essential. For this reason, graphical techniques are essential
parts of computational methods. On the other hand, it is not possible to cover all three
aspects, numerical, symbolic, and graphical, in a single volume. The choice made here is
to select a few of the standard topics in physics covered ‘in the undergraduate curriculum
and present them in ways that computers may be useful for their solutions. Even this
is too big a task. The compromise is to put the emphasis on numerical techniques. For
reasons mentioned in the previous paragraph, only an introduction is made to symbolic
manipulation techniques. Computer graphics is perhaps one of the fastest growing areas in
computing. For this reason also, it is best to leave everything beyond an introduction to
volumes specializing on the subject.

There is quite a bit of interest in the physics community in developing courses in compu-
tational physics, as has already been done in many places. Such courses should be regarded
as in parallel with the more traditional ones in mathematical physics and experimental
physics. It is one of the aims of this volume to serve as a textbook or major reference for
such a course. At the same time, many graduate students and senior undergraduates may
not have benefited from such a course. It is also the intention here to serve this group of
physicists. Engineers and other professional people who make use of computational tech-
niques in physics may also find it useful to examine some of the background involved in
solving some of the physical problems on computers.

Although a set of computer program is present here, it is not the primary intention
of the author to provide a library of subroutines for common problems in physics. The
computer programs used as examples and included in the accompanying diskette are in-
tended as illustrations for some of the materials discussed. They can be modified for other
applications. However, before one does that, as with any computer program, the programs
should be thoroughly tested first for the intended purpose.

S. S. M. Wong




Preface to the Second Edition

The excellent reception of the first edition by the reader community worldwide makes
it imperative for a new edition. Many subtle changes have taken place in scientific
computation in the time interval. Most of these are driven by the tremendous increase
in computational power available to the individual user, making it possible to carry
out work almost unthinkable a little while ago and there is every indication that the
trend will continue in the near future. As a result, computational techniques become
even more indispensable to engineers and scientists than ever before. At the same
time, the convenience of communication through internet is also having an impact
on how computers are used and how some of the computations are carried out these
days.

The main changes in the second edition include the addition of a chapter on
finite element methods. The growth of available computing power makes it more and
more attractive to solve many complicated differential equations numerically and a
different approach from the traditional finite difference methods is getting increasing
attention, especially in the physics community. In order to keep the volume from
expanding into unmanageable size, some sacrifices have to be made. These include
introductory chapters on graphics and computer algebra and a couple of sections
on topics that are less popular. Some derivations that can be left to references are
also omitted. In order to accommodate these changes, most of chapters have been
substantially rewritten. The end result is a volume that is more ideal in size both for
the classroom and on the desk.

Many valuable suggestions have been received from readers and they have been
incorporated, as far as possible, into the new edition. The author is greatly indebted
to colleagues for caring to communicate and share their thoughts. The strong en-
couragement and support from World Scientific also form an essential ingredient in
making the decision to finish on the second edition.

Samuel S.M. Wong
Toronto
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Chapter 1

Computational Methods

Modern electronic computers owe their origin, to a large extent, to the needs in
science and engineering. In the 50 years or so since their appearance, computers
have out-performed their original goals of solving numerical problems and keeping
tracks of information. They are now an essential tool in almost every aspect of the
daily routines of engineers and scientists, from data collection to writing technical
reports. The high speed of computation available to us these days opens up not only
new ways of carrying out traditional tasks but also new areas of endeavor that have
implications going well beyond what we can realize at the moment. Our concern
here is limited to a small, albeit important, corner of the role of modern computers
in science and engineering, namely some of the general techniques to solve common
problems encountered in physics and engineering.

1-1 Numerical calculations and beyond

When we use a computer to solve a problem in science, the general assumption is that
it is done numerically. Indeed, the proper name of most computers in the market is
“digital computer,” reminding us of the fact that numbers are being manipulated.
However, in addition to mathematical operations, such as addition and multiplica-
tion, the central processor of a computer is also capable of logical operations, that
is, making decisions depending on whether a particular condition is true or false.
Furthermore, a binary digit, or “bit,” of the computer memory may be regarded as
a logical unit, representing the value “true” if it is on (= 1) and “false” if it is off
(= 0). In this way, a computer can be programmed equally well to carry out logical
decisions or, more generally, symbolic manipulations. )

At the same time, the computer screen is made of lines of horizontal dots or
“pixels.” On a monochrome screen, each dot can be turned on or off. For a color
monitor, there is the further capability of displaying different colors at each dot. As
a result, very effective graphical images can be displayed. The same is also true for
paper output. For this reason, in addition to numerical calculation and symbolic
manipulation, computers are used extensively for graphics.
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In this volume, we shall be mainly concerned with numerical calculations. Be-
fore we get totally immersed in the topic, it is useful to remind ourselves that both
symbolic manipulation and graphic presentation are also important in scientific ap-
plications of computers. We shall give a brief description of both topics before getting
on to numerical calculations.

Computer algebra Among the various possibilities of using computers for “arti-
ficial intelligence” applications, symbolic manipulation, more commonly referred to
as computer algebra, is an important tool in scientific endeavors. However, we shall
net go into the subject in this volume. The main reason for this choice is that,
most computer algebra are carried out using one of the available “packages,” such as
Maple (Symbolic Computation Group, University of Waterloo), Mathematica (Wol-
fram Research. Inc), and Reduce (Rand Corporation). Although the Lisp language,
for example, 15 designed for the purpose of symbolic manipulation, most of computer
algebra applications these days are carried without explicitly going to the level of
actually programming a computer using one of the general purpose programming
languages.

In most computer applications, it is desirable for us to give the instructions in a
language that is as close as possible to the working language of the subject we are
involved with. In the case of algebraic calculations, it is natural for us to want to

work in terms of algebraic equations. For example, if we wish to solve the set of
equations:

ar+by = ¢
dr +ey f (1-1)

1t would be nice if all we need to say to the computer is something like

Il

SOLVE
ar+by=c
dr+ey=f
FOR T AND y.

However, to solve Eq. (1-1) requires some knowledge of linear algebra that is beyond
the basic mathematical and logical operations a computer is designed for.

As we shall see later in §5-1, the solution may be expressed in terms of ratios
of determinants. In general, we cannot expect a computer or any general purpose
programming language to possess such advanced knowledge of algebra. On the other
hand, for commonly encountered applications, one can think of developing a set of
codes that specialize in these problems. In this way, we can always call up the codes
whenever we want to solve, for example, a set of linear equations as in the example
above. In fact, we can put together a number of such codes that carry out related
functions, such as evaluating determinants, inverting matrices, finding the roots of
linear equations, and write a “driver” to manage them. Such a collection is often
loosely referred to as a “package.” The development of computer algebra, to a large
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extent, has followed this route. As a result, algebraic calculations are usually carried
on computers in terms of one of the existing packages. In fact, some of these symbolic
manipulation packages are so versatile that they can be regarded as programming
languages for a large class of calculations.

Because of this tendency, discussions on algebraic calculations are often based on
one of the popular packages. Since most textbooks in physics and engineering have
already done a good job in presenting the algebraic aspects of various topics, the main
work we need to do is to cast the problems in terms of the language of one of the
packages. We shall not do this here. Instead, we shall give an example of algebraic
calculation later in §1-4, just to provide some introduction to those who have not
been exposed to the wonders of computer algebra.

The development of numerical methods for physics and engineering is somewhat
different. Although there are many excellent “packages” available to carry out specific
calculations, such as eigenvalue problems and matrices,[2] they tend to exist in the
form of subprogram libraries. In this case, the user often has to write a “calling”
program to transform the problem in hand into one that can take advantage of the
library to perform some of the calculations. Similar to other tools, a basic knowledge
of the numerical methods used in these subprogram is essential in this case.

Computer graphics An important market for computers these days is in graphics.
This is, in part, due to the success in computer animation and computer aided design.
Such applications clearly belong to totally different treatments from what we intend
here. However, there is a small area of computer graphics that is important to
numerical work, namely graphical representation of results.

In numerical calculations, the results often appear as a table of numbers and, for
a complicated problem, such a table can be an extensive one. A good way to gain
an overall feeling for a large set of numbers is to view them in the form of a plot.
Before computers, plots are usually done on a sheet of graph paper. For simplicity,
let us consider the problem of making a linear plot for some function y of a single
independent variable z. The graph paper we shall use in this case is nothing but
a sheet of paper with (N, + 1) evenly spaced horizontal lines and (N, + 1) evenly
spaced vertical lines. The plotting area of our graph paper may therefore be regarded
as made up of N, x N, squares. We can select one of the horizontal lines as our z-axis
and a vertical line as the y-axis. The scales of our two axes are set by the ranges of
values we wish to display. The actual plotting is carried out by putting on the graph
paper a symbol for the value of y corresponding to each one of the values of z we
are interested in. For a continuous function, the plot of y versus z is a continuous
curve. However, for our purpose here, such a continuous curve may be regarded as
a collection of closely spaced points, one for each possible values of the independent
variable z.

We can follow basically the same steps to plot the graph on a computer screen
or a sheet of output. The reason is that both types of device are made of a number
of dots or pixels, very similar to the squares on our graph paper. For example, many
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monitors are said to have a resolution of 1024 x 746. For our present purpose, it may be
regarded as a graph paper with 1024 horizontal lines and 746 vertical lines. The only
difference is that, for a variety of technical reasons which we do not need to go into
here, the spacings between the horizontal lines and vertical lines are not necessarily
equal. In fact, the aspect ratio, ie., the ratio of the horizontal and vertical size of
each element, on a computer screen is usually less than one. As a result, each one
of the basic elements on our “graph paper” is, often, a rectangle instead of a square
as on a normal sheet of graph paper. While this difference causes some nuisance in
displaying a graph, it does not impose any fundamental problem and we shall ignore
it here. For output on paper, it is not difficult to obtain resolutions of 300 to 600 dots
per inch. This means that we can easﬂy have the equivalent of 300? to 6002 elements
on each square inch of a sheet of output.

The computer screen (often paper output as well) has the advantage of color. As
a result, we have an additional dimension to express our “graphs” that is not easily
available on graph papers. Furthermore, it is possible to generate many frames of a
“graph” in a short time and, as a result, one can have a “movie” of our calculated
results to show, for example, the time development of a process.

Although the basic principles of computer graphics are simple, the actual appli-
cations require some preparations. Most computers come with machine-level instruc-
tions to access and to manipulate the pixels. However, it will be extremely tedious
to plot a graph using such low-level instructions. In fact, what we prefer is that, for
example, once two arrays, say X_ARRAY and Y_ARRAY, are generated, we can issue an
instruction like

PLOT Y_ARRAY versus X_ARRAY.

The computer will then go and find the best axes and scales to represent y as a
function of xr and display the results on the screen. Anotber instruction,

OUTPUT PLOT

will produce a printed version of the plot on a sheet of paper. For more complicated
plots, such as histograms, log plots, contours, and surfaces, we can think of, at least
in principle, developing similar conversation-like instructions.

Needless to say, we are not close to this ideal level of graphics programming on
computers. Partly because of the fact that the standardization of computer graphics
hardware and software is still in the development stage, there are only, at the time of
writing, the beginnings of common high-level graphics programming languages and
“interfaces” that are portable between different types of computers. As a result, we
must once again resort to “packages.” Similar to computer algebra, there are many
fairly extensive plotting packages available, both public domain and commercial, and
most plottings are done using one of these packages.
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1-2 Integers and floating numbers

Most computers make a clear distinction between integers and floating numbers. An
integer is a number, such as 5, —213, and 0, without a part that must be represented
by a decimal point. A floating or real number is any other type of number, such as
3.1415926 . . ., 3.0 x 10%, and —9.9, that requires a decimal point to specify its value.
The reason for differentiating between these two types of numbers comes from the
structure of the computer memory.

The basic unit for storing a number in a computer is a bit, the state of an electronic
component that is either on or off, as we saw earlier. The two possible states of a bit
may be used to represent two numerical values 0 (off) and 1 (on). Since a single bit
is too small for most interests, 8 bits are grouped together into a byte. The status
of a byte may be represented by an eight-digit binary number b U U U U U LU U,
where we have added a prefix b in front of the number to indicate that it is in the
binary representation. For example, the integer 5 is shown as 600000101 or simply
as b101. The largest integer that can be represented in one byte of storage is then
b11111111 = 28 — 1 = 255, ,

Before we leave the subject of internal representation of integers in the computer
memory, we shall define two other representations. The binary representation used
above is inconvenient in many cases because of the large number of digits required
to express most of the integers of interest to us. The hexadecimal representation is
based on powers of 16 (in an analogous way as the decimal system is based on powers
of 10). Each hexadecimal digit can take on values 0 through 15, and they are usually
written as 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B, 2C, zD, z2E, and 2F, where we
have added a prefix z to indicate that they are given in hexadecimal representation.
In terms of computer memory, each hexadecimal digit represents one of the possible
values stored in four binary digits (2* = 16). The value that can be stored in a byte is
then represented by two hexadecimal digits. Examples of numbers in the hexadecimal
representation and their corresponding values in decimal and binary representations
are given in Table 1-1.

Another way of displaying binary-based numbers is the octal representation. To
distinguish it from others, we shall prefix a number in the octal representation with
the letter o. (The lowercase o is used here instead of the uppercase so as to make it
easy to differentiate it from the number zero.) Each octal digit represents the value
given by 3 bits. This is convenient for some models of computer whose memories are
made of multiples of 3 bits, such as 36 and 60. In addition, octal representation is
also a convenient way for carrying out many types of manipulations.

In many calculations, a byte, which can only store integers up to 255, is still
too small. For this reason, each integer is often assigned either two or four bytes of
memory. Such a grouping of bytes is sometimes called a computer word, or just word
for short. Before we go into the question of the range of integer values a computer
word can store, we must recall that most numbers we are interested in have a + sign
associated with them. It is common practice to designate the first bit of an integer
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Table 1-1: Decimal, hexadecimal, octal, and binary representations of numbers.

Decimal dl;zlcei’r(:;l Octal | Binary ||Decimal d}gceﬁél Octal Binary

0 20 ol b0 10 zA 0l2 51010

1 z1 ol b1 11 zB 0l3 b1011

2 z2 02 b10 12 2C ol4 61100

3 z3 03 b11 13 zD ol5 51101

4 24 o4 5100 14 2B 0l6 51110

5 25 05 5101 15 zF 0l7 b1111

6 26 o6 b110 16 210 020 51 0000

7 27 o7 b111 17 z11 021 b1 0001

8 28 0l0 51000 18 212 022 51 0010

9 29 oll 51001 19 z13 023 510011
255 zFF 0377 b11111111
256 2100 0400 b1 0000 0000
257 2101 0401 b1 0000 0001

word as the sign bit. Thus, for a two-byte integer I, only 15 bits are available to
store the magnitude of the number. The possible values that can be represented by
such a word is then

-32,768 < I, < +32,767.

That is, ~2'° through (2'® —1). The reason that the maximum positive integer value
is one less than 2!* comes from the fact that +0 must also be considered as one of
the integers. (Why, then, is the maximum absolute value of a negative integer one
larger?) For a four-byte word, the possible value of an integer is then

—2,147,483,648 < I, < +2, 147,483,647

corresponding to —2%' to (2! — 1). Although the allowed range of integer values for
I, may be large, it is still not adequate for many purposes. For example, the upper
limit of /4 is less than 13! = 6,227,020, 800. As a result, it may not be possible to
carry out certain types of calculations that involve factorials. We shall see later ways
to circumvent this difficulty.

For most calculations in science and engineering, the use of integers alone is
too restrictive. Floating numbers broaden the range of values that can be kept in
the computer memory by allocating a part of a word to store the exponent of each
number. That is, each number now has a sign, a fraction part or mantissa, and an
exponent. Since the computer memory is made of bits, some arrangements must be
made to represent a number in this way. The usual case is to use four bytes for a
single-precision number. Among the 32 bits in such a word, 1 bit is devoted to the
sign, 8 bits are assigned to the exponent, and the remaining 23 bits are left for the
mantissa. In this way, numbers with absolute values in the range from approximately



