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HE Kalman Filter! The term evokes many and varied

responses among engineers, scientists, and man-
agers who hear it. For some, it is a buzzword that must
be used in a proposal when attempting to obtain
contractual support for a new effort; for others, it is an
answer in search of a problem as they already know of
better ways to solve their specific problem; for some, it
represents a practical set of procedures that they can
use to process numerical data to obtain estimates of
parameters and variables whose values are uncertain.
This book is addressed to those individuals who know
of the Kalman filter, accept that it may provide a
computational means to solve their numerical data
processing problem, and want to learn more about it.

It is probably not an overstatement to assert that the
Kalman filter represents the most widely applied and
demonstrably useful result to emerge from the state
variable approach of ‘‘modern control theory.”” The
application of the basic algorithm and the evolution of
the body of algorithms that currently can be said to
represent the ‘‘Kalman Filter’’ began remarkably soon
after the original publication of the recursive, computa-
tional procedure proposed by Kalman and others. The
earliest applications were stimulated by the ‘‘leap’’ into
space that was beginning in the early sixties. The first
proposed application of this revolutionary approach
was for many (certainly this author) a NASA report
published by Gerald Smith, Stanley Schmidt, and
Leonard McGee in 1962 [1]. In the few years following
the emergence of this report, there was a flurry of
substantial activity, primarily in the aerospace industry,
that provided the basis for the Kalman filter now so
widely applied.

This book is divided into two, distinct parts. Part |
presents the germinal papers appearing during the
1960's that provided serious consideration of the
theoretical characteristics of the algorithm and the
problems that are encountered in attempting to apply it
to practical problems. Part |l presents a broad coverage
of applications that have been accomplished in the first
years of the 1980’s. These applications appeared in a
Special Issue of the IEEE TRANSACTIONS ON AUTOMATIC
ControL in March 1983 which is reprinted here in its
entirety. The breadth of the application topics speaks
clearly to the utility of the method and illustrates the
distance that the methodology has come since its initial
appearance and proposed applications.

The application papers in Part Il are supplemented in
Part | by a sampling of the theoretical papers that
served to shape the development of the methodology.
These papers have not been included as a reminiscence
about the good old days of the field. Many textbooks
have been published that review and synthesize the
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results presented in research papers that contributed to
the general development. A bibliography listing many of
the textbooks appears at the end of this introduction
that should provide the reader with a variety of careful
and comprehensive treatments of the subject. While
teaching graduate classes for several years and using
several of the books as prescribed texts or references, |
have been impressed by the positive response of
students to the requirement that they read the early
papers in the field as a means of understanding more
clearly the concerns that stimulated the resulits that
now are presented so logically in the textbooks. This
pedantic observation has served as the motivation for
the structure of this volume. By making the early papers
conveniently available, it is hoped that the reader will be
encouraged to peruse some of these papers and to
apply the advantage provided to them by the passage
of time to recapture the early excitement and the
insights that are still valid.

The theoretical papers are organized into several
subject areas. The material was organized in this
manner with the intention of defining the major
ingredients that must be considered in accomplishing a
successful application. In a sense, the topics chosen
are sufficiently independent that they can serve as a set
of coordinate vectors for the consideration of the area.
The volume is launched by an historical survey Section
I-A that appeared in the /EEE Spectrum. This paper,
‘‘Least-squares estimation: from Gauss to Kalman”’
provides a review of the field as it had developed by the
time of its appearance. Developments during the one
and one-half decades since its creation suggest
changes in detail but not of substance. Perhaps, this
may be an indication of the rapid development and
maturation of the basic methodology.

The first major group of five papers comprises
Section 1-B of Part |. These papers deal with the
fundamental development of the algorithm and its
interpretation from important and useful points-of-
view. The papers in Section |I-C deal with concerns that
arise as one attempts to apply the algorithm to a
problem. In particular, these papers discuss the manner
in which the Kalman filter algorithm, derived by consid-
ering linear, dynamic systems, can be applied to nonlin-
ear systems. From these and the other papers refer-
enced in this section arose the Extended Kalman Filter
which is, really, the subject of this book.

Given the algorithm and its earliest extensions to
nonlinear problems, numerical simulation studies
pointed to the dismaying conclusion that the estimates
and associated covariances produced by the EKF did
not necessarily bear a strong or discernible relationship
to the actual behavior of the system and the estimation



error. The term divergence was invented to define the
problem and launched the type of investigation that any
developer of an EKF for a specific problem must
consider and overcome. Early papers discussing diver-
gence and the effect of model errors that cause it are
found in Section I-D.

The methods of divergence control are almost as
varied as the imaginations of the people who have
addressed the problem. Generally, the procedures that
have been proposed are heuristic and ad hoc. The
procedures that appear to be based on more substan-
tial, theoretical grounds impose assumptions and condi-
tions that permit analysis but which are seldom satis-
fied in practice. Some of the major approaches that
were developed initially are presented in Section I-E. In
addition, references containing other approaches and
their variations are provided.

Putting aside concerns raised by modeling and ap-
proximation errors, the implementation of the EKF
algorithm can imply a computational burden, not only in
terms of its cycle-time and storage requirements, but
also in terms of the effects of numerical errors and their
cumulative effects as the recursion proceeds. Assess-
ments of the computational burden and methods for
reducing it by exploiting the structure of the model have
received consideration. Some early analyses and
results are presented in Section |-F. In addition the
utilization of sound numerical procedures (e.g., square-
root filters) in carrying out the calculations have con-
sistently received attention, beginning with the earliest
applications.

The Kalman filter provides an estimate of the state of
the system at the current time based on all measure-
ments of the system obtained up to and including the
present time. Smoothing is defined as a more general
estimation problem in which the state at some or all
times in the total sampling interval is estimated from
data obtained at times that both precede and succeed
the time being considered. While smoothing algorithms
have not seen as widespread use as the Kalman filter
for a variety of reasons, this presentation cannot be
complete without consideration of this more general
problem. Different types of smoothing problems can be
defined and each problem can be solved with mathe-
matically equivalent but computationally different al-
gorithms. Definitions and different solutions of smooth-
ing problems are described in Section I-G.

The development and analysis of the Kalman filter for
linear systems (Section |I-B), the consideration of its
application to realistic nonlinear systems (Section I-C),
the effects of model errors on the filter behavior
{Section I-D), methods with which the effect of model
errors can be diminished to tolerable levels (Section |-
E), and modifications of the basic algorithm to reduce
computational burden (Section I-F) provide an outline of
the major investigative directions during the evolution
of the Kalman filter to its current status. The papers
included in Sections I-B through |-G of this volume

represent only a fraction, at best, of the published
literature on the subject. A bibliography by Mendel and
Gieseking [2] and the survey paper by Kailath [3]
provide additional sources for information about early
work. Other references are included in the papers
themselves, in the books that are listed in the Bibliogra-
phy at the end of this Introduction, and in the refer-
ences given at the end of each section.

Part 1l of this book contains the application papers
that appeared in the Special Issue which was identified
earlier. The reader should find at least several papers
that are of interest because the specific application
being considered. It is informative and, hopefully,
illuminating to read each paper from the perspective of
the manner in which the author deait with the general
problems considered in the papers of Part 1. Many
clever solutions are described which, while stemming
from the same concerns as stimulated the analyses
presented in Part |, illustrate the variety of approaches
possible in achieving a successful implementation of a
Kalman filter. Alternatively, some applications leave the
reader wondering how or why a generic problem was
not discussed.
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Least-squares estimation:
from Gauss to Kalman

The Gaussian concept cf estimation by least squares, originally
stimulated by astronomical studies, has provided the basis for a
number of estimation theories and techniques during the
ensuing 170 years—probably none as useful in terms

of today’s requirements as the Kalman filter

H. W. Sorenson University of California, San Diego

This discussion is directed to least-squares estimation
theory, from its inception by Gauss! to its modern
form, as developed by Kalman.2 To aid in furnishing
the desired perspective, the contributions and insights
provided by Gauss are described and related to de-
velopments that have appeared more recently (that is,
in the 20th century). In the author'’s opinion, it is en-
lightening to consider just how far (or how little) we
have advanced since the initial developments and to
recognize the truth in the saying that we ‘'stand on the
shoulders of giants.”’

The earliest stimulus for the development of estimation
theory was apparently provided by astronomical studies
in which planet and comet motion was studied using tele-
scopic measurement data. The motion of these bodies can
be completely characterized by six parameters, and the
estimation problem that was considered was that of in-
ferring the values of these parameters from the measure-
ment data. To solve this problem concerning the revolu-
tion of heavenly bodies, the method of least squares was
invented by a ‘“‘young revolutionary” of his day, Karl
Friedrich Gauss. Gauss was 18 years old at the time of his
first use of the least-squares method in 1795.

As happens even today (e.g., the Kalman filter), there
was considerable controversy in the early 19th century re-
garding the actual inventor of the least-squares method.
The conflict arose because Gauss did not publish his
discovery in 1795. Instead, Legendre independently in-
vented the method and published his results in 1806 in
his book Nouvelles méthodes pour la determination des
orbites des cométes. It was not until 1809, in his book
Theoria Motus Corporum Coelestium,that Gauss published
a detailed description of the least-squares method. How-
ever, in this treatise Gauss mentions Legendre’s discus-
sion of least squares and pointedly refers to his own earlier
use (p. 270, Theoria Motus)*: “‘Our principle, which we

* The page numbers here refer to the English translation availa-
able from Dover Publications, Inc.!

have made use of since the year 1795, has lately been
published by Legendre in the work Nowvelles méthodes
pour la determination des orbites des cometes, Paris, 1806,
where several other properties of this principle have been
explained which, for the sake of brevity, we here omit.”
This reference angered Legendre who, with great indigna-
tion, wrote to Gauss and complained? that “Gauss, who
was already so rich in discoveries, might have had the
decency not to appropriate the method of least-squares.”
It is interesting to note that Gauss, who is now regarded
as one of the “giants” of mathematics, felt that he had
been eclipsed by Legendre and wrote to a friend saying,?
“It seems to be my fate to concur in nearly all my the-
oretical works with Legendre. So it is in the higher arith-
metic, . . ., and now again in the method of least-squares
which is also used in Legendre’s work and indeed right
gallantly carried through.” Historians have since found
sufficient evidence to substantiate Gauss’ claim of pri-
ority to the least-squares method, so it is Legendre
rather than Gauss who was eclipsed in this instance and,
indeed, in general.

The method of least squares

The astronomical studies that prompted the invention
of least squares were described by Gauss in Theoria
Motus.! The following quotation (p. 249) not only de-
scribes the basic ingredients for Gauss’ studies but cap-
tures the essential ingredients for all other data-processing
studies. “If the astronomical observations and other
quantities on which the computation of orbits is based
were absolutely correct, the elements also, whether de-
duced from three or four observations, would be strictly
accurate (so far indeed as the motion is supposed to take
place exactly according to the laws of Kepler) and, there-
fore, if other observations were used, they might be
confirmed but not corrected. But since all our measure-
ments and observations are nothing more than approxi-
mations to the truth, the same must be true of all calcula-
tions resting upon them, and the highest aim of all compu-

Reprinted from /EEE Spectrum, vol. 7, pp. 63-68, July 1970.
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tations made concerning concrete phenomena must be to
approximate, as nearly as practicable, to the truth. But
this can be accomplished in no other way than by a suit-
able combination of more observations than the number
absolutely requisite for the determination of the unknown
quantities. This problem can only be properly under-
taken when an approximate knowledge of the orbit has
been already attained, which is afterwards to be cor-
rected so as to satisfy all the observations in the most
accurate manner possible.”

Let us briefly reconsider some of the ideas contained in
the preceding statement and relate them to “modern”
developments.

1. Gauss refers to the number of observations that are
absolutely required for the determination of the un-
known quantities. The problem of establishing this mini-
mum number of observations is currently discussed in
terms of the “observability of the system” and is the
subject of many papers; see Refs. 4 and 5, for example.

2. Gauss notes that more observations are required
than this minimum because of the errors in the measure-
ments and observations. Thus, he notes the need for
“redundant” data to eliminate the influence of measure-
ment errors.

3. Gauss implies that the equations of motion must
be exact descriptions, and therefore the problem of dy-
namic modeling of the system is raised.

4. Gauss requires that approximate knowledge of the
orbit be available. This is currently required in virtually
all practical applications of Kalman filter theory,® for
example, and implies the use of some linearization pro-
cedure.

5. Gauss states that the parameter estimates must
satisfy the observations in the most accurate manner
possible. Thus, he calls for the residuals (that is, the
difference between the observed values and the values
predicted from the estimates) to be as small as possible.

6. Gauss refers to the inaccuracy of the observations
and indicates that the errors are unknown or unknowable
and thereby sets the stage for probabilistic considerations.
In doing so, he anticipates most of the modern-day ap-
proaches to estimation problems.

7. Finally, Gauss refers to the “suitable combination”
of the observations that will give the most accurate esti-
mates. This is related to the definition of the structure of
an estimation procedure (i.e., linear or nonlinear filtering)
and to the definition of the performance criterion. These
are extremely important considerations in current dis-
cussions of estimation problems.

As stated earlier, Gauss invented and used the method
of least squares as his estimation technique. Let us con-
sider Gauss’ definition of the method (Ref. 1, page 260).
He suggested that the most appropriate values for the
unknown but desired parameters are the most probable
values, which he defined in the following manner: . . . the
most probable value of the unknown quantities will be
that in which the sum of the squares of the differences be-
tween the actually observed and the computed values
multiplied by numbers that measure the degree of preci-
sion is a minimum.” The difference between the observed
and computed measurement values is generally called the
residual,

To make the discussion more precise, consider the
following statement of the estimation problem. Suppose
that m measurement quantities are available at discrete

instants of time (1, t, ..., t,) and are denoted at each
time #, as z:. Suppose that parameters x are to be de-
termined from the data and are related according to

7z, = Hx + v, )

where the v, represent the measurement errors that occur
at each observation time. As is seen in Eq. (1), the mea-
surement data and the parameters x are assumed here to
be linearly related, thereby making explicit the assump-
tion that Gauss indicated was necessary in the foregoing
quotation.

Denote the estimate of x based on the n data samples
{21, 23, - - -, Za} &S Xa. Then, the residual associated with
the kth measurement is

rhézt_’Hkﬁn k=0311""n (2)

The least-squares method is concerned with determin-
ing the most probable value of x (that is, X..). This most
probable value is defined as the value that minimizes the
sum of the squares of the residuals. Thus, choose x so that

L. = ;— 3 [ — Hxl™Wiz — Hx] ()
k=0

is minimized. The elements of the matrixes W; are selected
to indicate the degree of confidence that one can place in
the individual measurements. As will be explained more
fully in the discussion of the Kalman filter, W, is equiva-
lent to the inverse of the covariance of the measurement
noise.

Gauss with his remarkable insight recognized that the
simple statement of the least-squares method contains the
germ of countless interesting studies. As he says in
Theoria Motus (Ref. 1, page 269): “The subject we have
just treated might give rise to several elegant analytical
investigations upon which, however, we will not dwell,
that we may not be too much diverted from our object.
For the same reason we must reserve for another occasion
the explanation of the devices by means of which the
numerical calculations can be rendered more expedi-
tious.” Judging by the interest in estimation theory over
the years, this statement must stand as one of the greatest
understatements of all time. In passing, we note that the
Kalman filter can be rightfully regarded as an efficient
computational solution of the least-squares method.

Gauss did not merely hypothesize the least-squares
method; it is interesting to consider his discussion of the
problem of obtaining the ‘“‘most probable” estimate as
an introduction to more modern techniques. First, it is
significant that he considered the problem from a proba-
bilistic point of view and attempted to define the best
estimate as the most probable value of the parameters.
He reasoned that errors in the measurements would be
independent of each other, so the joint-probability density
function of the measurement residuals can be expressed
as the product of the individual density functions

Sf@Xo, 1, -+, 10) = flrdf(r)- - -frs) @
Next, he argued that the density f(r:) would be a normal
density

fn) = %exp BarT Wi )

although he recognized that one never obtains errors of
infinite magnitude, and thus Eq. (5) is not realistic.
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However, he rationalized away this difficulty by stating
(page 259) that: “The function just found cannot, it is
true, express rigorously the probabilities of the errors for
since the possible errors are in all cases confined within
certain limits, the probability of errors exceeding those
limits ought always to be zero while our formula always
gives some value. However, this defect, which every
analytical function must, from its nature, labor under, is
of no importance in practice because the value of our
function decreases so rapidly, when [r.TWur] has ac-
quired a considerable magnitude, that it can safely be
considered as vanishing.”

Gauss proceeded by noting that the maximum of the
probability density function is determined by maximizing
the logarithm of this function. Thus, he anticipated the
maximum likelihood method, which was introduced by
R. A. Fisher? in 1912 and has been thoroughly investi-
gated up to the present time. It is interesting that Gauss
rejected the maximum likelihood method® in favor of
minimizing some function of the difference between esti-
mate and observation, and thereby recast the least-
squares method independent of probability theory.
However, in maximizing the logarithm of the independent
and normally distributed residuals, one is led to the
least-squares problem defined by Eq. (3).

Kalman filter theory

Let us now leave the early 19th century and enter the
20th century. Consider, briefly, some of the major de-
velopments of estimation theory that preceded the intro-
duction of the Kalman filter. As already mentioned, R. A.
Fisher introduced the idea of maximum likelihood esti-
mation and this has provided food for thought throughout
the subsequent years. Kolmogorov? in 1941 and Wiener®
in 1942 independently developed a linear minimum
mean-square estimation technique that received con-
siderable attention and provided the foundation for the
subsequent development of Kalman filter theory.

In Wiener-Kolmogorov filter theory, Gauss’ inference
that linear equations must be available for the solution
of the estimation problem is elevated to the status of an
explicit assumption. There are, however, many conceptual
differences (as one would hope after 140 years) between
Gauss’ problem and the problem treated by Wiener and
Kolmogorov. Not the least of these is the fact that the
latter considered the estimation problem when measure-
ments are obtained continuously, as well as the discrete-
time problem. To maintain the continuity of the present
discussion, attention shall be restricted to the discrete
formulation of Wiener-Kolmogorov (and later Kalman)
filter theory.

Consider the problem of estimating a signal 8., possibly
time-varying, from measurement data (zo, z;, **, Za),
where the s, and the {z,} are related through knowledge
of the cross-correlation functions. Assume that the esti-
mate of s,, say Q./.., is to be computed as a linear combina-
tion of the z;:

gn/n = 2 Hu.(zl (6)
=0

The “filter gains” H,  are to be chosen so that the
mean-square error is minimized; that is, choose the
H,,,in such a way that

Mn = E[(su - §uln)r(sn - §n/n)] (7)

is minimized. It is well known!! that a necessary and suffi-
cient condition for 8./, to minimize M, is that the error in
the estimate (8.a £ 8. — 8./a) be orthogonal to the
measurement data

E[§../,.Z¢7'] =0 i= 09 1’ e, n (8)
This is the Wiener-Hopf equation, which is frequently

written as

Es.zl = 3 HasBlzzr]l  i=0,1,

J=0

e, (9)

This equation must be solved for the H,,; in order to
obtain the gains of the optimal filter. One can rewrite this
as a vector-matrix equation whose solution, theoretically
speaking, is straightforward. However, the matrix in-
version that is required becomes computationally im-
practical when n is large. Wiener and Kolmogorov as-
sumed an infinite amount of data (that is, the lower limit
of the summation is — « rather than zero), and assumed
the system to be stationary. The resulting equations were
solved using spectral factorization.® 10.12

The problem formulated and described here is signifi-
cantly different from Gauss’ least-squares problem. First,
no assumption is imposed that the signal is constant.
Instead, the signal can be different at each # but can be
described statistically by the autocorrelation and cross-
correlation functions of the signal and measurement data.
Second, instead of arguing that the estimate be the most
probable, a probabilistic version of the least-squares
method is chosen as the performance index.

It has been found that Eq. (9) is solved in a relatively
straightforward manner if one introduces a ‘“‘shaping
filter” 13. 14 to give a more explicit description of the signal.
In particular, suppose that the signal and measurement
processes are assumed to have the following structure.
The measurements are described by

zZ; =8 + v

Hx: + v; (10)
where v; is a white-noise sequence (that is, v; is both
mutually independent and independent of x;). The

system state vector x; is assumed to be described as a
dynamic system having the form

Xitp = Pir1,iXs + Wi (11)

where w; represents a white-noise sequence. Note that if
the noise w; is identically zero and if ®:4,,; is the identity
matrix, then the state is a constant for all i and one has re-
turned basically to the system assumed by Gauss. With
the system described by Egs. (10) and (11), the known
statistics for the initial state xo, and the noise sequences
{w.} and {v:}, one can proceed to the solution of Eq. (9).

Although the weighting function for the filter can be
determined, a new solution must be generated for each n.
It seems intuitively reasonable that estimates of s.+: (or
Xa+1) could be derived, given a new measurement Z,+,
from §../.. and 2.+, rather than from z,, z,, - -, Za, Za+1,
since 8,/ is based on the data (zo, 2z, - - -, Z.). In 1955
J. W. Follin'® at Johns Hopkins University suggested a
recursive approach based on this idea, which he carried
out for a specific system. This approach had immediate
appeal and essentially laid the foundation for the de-
velopments that are now referred to as the Kalman filter.
It is clear (for example, see Ref. 16, p. 129) that Follin's
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work provided a direct stimulus for the work of Richard
Bucy, which led to his subsequent collaboration with
Kalman in the continuous-time version of the filter
equations. ! As frequently happens, the time was ripe for
this approach, because several other people independently
investigated recursive filter and prediction methods;
see, for example, Refs. 18 and 19. Also, the method of
stochastic approximation?® was introduced and being
studied for related problems?! during this period.

Kalman published his first paper on discrete-time, re-
cursive mean-square filtering in 1960.2 It is interesting to
note that, analogous to the Gauss-Legendre squabble
concerning priority of the least-squares method, there is a
difference of opinion concerning the originator of the
Kalman filter. Peter Swerling published a RAND
Corporation memorandum in 1958 describing a re-
cursive procedure for orbit determination. Of further
interest is the fact that orbit determination problems
provided the stimulus for both Gauss’ work and more
modern-day developments. Swerling’s method is es-
sentially the same as Kalman’s except that the equation
used to update the error covariance matrix has a slightly
more cumbersome form. After Kalman had published his
paper and it had attained considerable fame, Swerling?*
wrote a letter to the AI4A4 Journal claiming priority for
the Kalman filter equations. It appears, however, that his
plea has fallen on deaf ears.

The developments beginning with Wiener’s work and
culminating with Kalman’s reflect fundamentally the
changes that have occurred in control systems theory
during this period. In the *“classical control theory,” the
emphasis was on the analysis and synthesis of systems in
terms of their input-output characteristics. The basic
tools used for these problems were the Laplace and Four-
ier transforms. The original formulation and solution of
the Wiener-Kolmogorov filtering problem is consistent
with this basic approach. More recent developments have
stressed the “state-space” approach, in which one deals
with the basic system that gives rise to the observed out-
put. It represents in many ways a return to Gauss’ ap-
proach, since he referred to the dynamic modeling
problem as noted earlier. Also, the state-space approach
makes use of difference and differential equations rather
than the integral equations of the classical approach.
Although the two approaches are mathematically
equivalent, it seems to be more satisfying to work with
differential equations (probably since dynamical systems
are generally described in this manner).

At this point, let us summarize the Kalman filtering
problem and its solution. The system that is considered is
composed of two essential ingredients. First, the state is
assumed to be described by

Xepr = Bupr Xz + w, (11)
and the measurement data are related to the state by
Zz = Hixp 4 v (10")

where {w.} and {v.} represent independent white-noise
sequences. The initial state x, has a mean value X¢/_; and
covariance matrix Py_; and is independent of the plant
and measurement noise sequences. The noise sequences
have zero mean and second-order statistics described by

Elviv;T] = Riéy; Elwiw,;T] = Qudy;
EIVgW,'T] =0 for all I\,j

10

where §;; is the Kronecker delta.

An estimate X,,; of the state x; is to be computed from
the data z,, z,, - - -, z; so as to minimize the mean-square
error in the estimate. The estimate that accomplishes this
is to be computed as an explicit function only of the
measurement z, and the previous best estimate Xi—/.-1.
This approach leads to a recursive solution that provides
an estimate that is equivalent to the estimate obtained by
processing all of the data simultaneously but reduces the
data-handling requirements. The estimate of the signal

Hng (]2)

8
is given by

= HXyp

13

The solution of this recursive, linear, mean-square
estimation problem can be determined from the or-
thogonality principle given in Eq. (8), as well as in a large
variety of other ways, and is presented below. This sys-
tem of equations has come to be known as the Kalman
filter. The estimate is given as the linear combination of
the estimate predicted in the absence of new data, or

-
Sk/k

~ -
X/ Dy k1 Xi1/51

and the residual r,. Thus, the mean-square estimate is

Qh,k—lik—]/k—l + Kk[zb - Hkq)k.l'—lik—l/b—ll (14)

ib/l
The gain matrix K, can be considered as being chosen to
minimize E[(X: — Xi/2)T(X: — Xu/s)) and is given by

Ki = Py HiT(H PrpirHT + R 1s)

The matrix Py, is the covariance of the error in the pre-
dicted estimate and is given by

Pt = El(X: — Xapp-1)XXe — Xaim1)T) (16)
= (bkll—lPL—l/k-le,hlr + Qk—l (17)

The Py is the covariance of the error in the estimate

X/ke
P Elx, — ;(k/k)(xk - Xi/i)T]

Py — KeH Py

(18)
19)

Equations (14), (15), (17), and (19) form the system of
equations comprising the Kalman filter.*.¢

Kalman filter theory—a perspective

Let us relate elements of this problem to Gauss® earlier
arguments. First, Kalman assumes that the noise is
independent from one sampling time to the next. But
it is clear from Eq. (5) that this is equivalent to assuming
that the residual (z. — H.x;) is independent between
sampling times and therefore agrees with Gauss’ as-
sumption. Next, the noise and initial state are essentially
assumed by Kalman to be Gaussian. The linearity of the
system causes the state and measurements to be Gaussian
at each sampling time. Thus the residual is Gaussian, as
Gauss assumed. Therefore, one sees that the basic as-
sumptions of Gauss and Kalman are identical except that
the latter allows the state to change from one time to the
next. This difference introduces a nontrivial modification
to Gauss’ problem but one that can be treated within a
least-squares framework if the noise {w.} is considered as
the error in the plant model at each stage. In particular,
one can formulate the least-squares problem as that of
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choosing the estimates X, and the plant errors w, to
minimize the modified least-squares performance index.

L. ; (Xo — 8)"My~Y(xo — a)

+ % Y. (@ — Hx)T™R:~(z: — Hxy)
i=0
1 n-1
+§ Z w.TQ: " w;  (20)
i=0

subject to the constraint
@n

Note that the first term essentially describes the uncer-
tainty in the initial state. If one has no a priori informa-
tion, then M,~1 is identically zero and the term vanishes.
Similarly, if there is no error in the plant equation, Q,~!
is identically zero so this term vanishes. Then Eq. (20) is
seen to reduce to Gauss’ least-squares problem, as given
in Eq. (3). The weighting matrices M,~!, R,~%, and Q,™!
represent the matrix inverses of the a priori covariance
matrices if a probabilistic interpretation is desired.

One can obtain a recursive solution to the problem of
minimizing (20) by noting that

X: = Pra-1Xi1 + Wi

L,=L.+ 12 (zn - nxn)TRn— "(zn - ann)

3 Wi Q"W (22)
and by then proceeding inductively starting with n = 0 to
obtain recursion relations for the least-square estimate.?®
If this is done, the Kalman filter equations are obtained.
It is then indicated that, for this linear problem, de-
terministic least-squares estimation theory and the
probabilistically based mean-square estimation theory are
equivalent. Further, the problem of minimizing Eq. (22)
is seen to give the most probable estimate for this system.,

Since the Kalman filter represents essentially a re-
cursive solution of Gauss’ original least-squares problem,
it is reasonable to consider the substance of Kalman’s
contribution and attempt to put it into perspective. It
cannot be denied that there has been a substantial con-
tribution if for no other reason than the large number of
theoretical and practical studies that it has initiated. I
suggest that the contribution is significant for two basic
reasons:

1. The Kalman filter equations provide an extremely
convenient procedure for digital computer implementa-
tion. One can develop a computer program using the
Kalman filter in a direct manner that (initially, at least)
requires little understanding of the theory that led to their
development. There are well-established numerical
procedures for solving differential equations, so the
engineer does not have to be worried about this problem.
By contrast, the solution of the Wiener—-Hopf equation
and the implementation of the Wiener-Kolmogorov
filter must be regarded as more difficult or there would
have been no need for the Kalman filter. Since Gauss was
very concerned with the computational aspects of least-
squares applications, one can imagine that he would
appreciate the computational benefits of the Kalman
filter.

2, Kalman posed the problem in a general framework
that has had a unifying influence on known results.

11

Further, one can analyze the behavior of the estimates
within the general framework and thereby obtain signifi-
cant insights into the results obtained from computa-
tional studies. There has been a veritable ‘‘explosion” of
theoretical papers that have recognizable roots in
Kalman’s work and thereby testify to the richness of his
formulation.

Finally, a third reason for the popularity might be
considered, although it is less tangible in character than
the other two. It is worth noting that Kalman recognized
the potential of his results, whereas others working in
the area either did not or were not as successful in com-
municating the intrinsic worth of recursive filtering to
others. One cannot overemphasize the value of recog-
nizing and successfully communicating significant new
results.

The Kalman filter, which assumes linear systems, has
found its greatest application-to nonlinear systems. It is
generally used in these problems by assuming knowledge
of an approximate solution (as Gauss proposed) and by
describing the deviations from the reference by linear
equations. The approximate linear model that is obtained
forms the basis for the Kalman filter utilization. Com-
monly, such applications are accomplished with great
success but, on occasion, unsatisfactory results are ob-
tained because a phenomenon known as divergence oc-
curs.24.26

Divergence is said to occur when the error covariance
matrix P, computed by the filter becomes unjustifiably
small compared with the actual error in the estimate.
When P, becomes small, it causes the gain matrix to be-
come too small and new measurement data are given too
little weight. As a result, the plant model becomes more
important in determining the estimate than are the data
and any errors in the model can build up over a period of
time and cause a significant degradation in the accuracy
of the estimate. This happens most commonly when the
plant is assumed to be error-free (i.e., w, = 0 for all %).
If the model were perfect and contained no random or
model errors, then the vanishing of the error covariance
matrix would be desirable and would represent the fact
that the state could be determined precisely if sufficient
redundant data were processed. However, it is naive at
best to assume that any physical system can be modeled
precisely, so it is necessary to account for model errors.
Thus, it has become good practice® always to include the
plant error or noise term w;. It should be emphasized
that divergence does not occur because of any fault of
the filter. If the system were actually linear, Kalman*
showed that the filter equations are stable under very
reasonable conditions. Thus, the divergence is a direct
consequence of the errors introduced by the linear ap-
proximation.

To reduce approximation errors, the so-called ‘‘ex-
tended Kalman filter” is generally used in practice. In
this case the nonlinear system is linearized by employing
the best estimates of the state vector as the reference
values used at each stage for the linearization. For
example, at time f—;, the estimate X,—1/s— is used as the
reference in obtaining the transition matrix &, ;. This
approximation is utilized in Eq. (17) to obtain the Kal-

man error covariance P;;—,. The estimate is given by
(23

Xijm1 = fl(Xi1/a-1)

where f; is used to denote the nonlinear plant equation.
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In most cases it is obtained as the solution of an ordinary
differential equation that describes the plant behavior.
The processing of the data obtained at 7, is accomplished
in a similar manner. The estimate X./-, serves as the
reference for the determination of a linear approximation
H, to the nonlinear measurement equation. The matrix
H, is used in Eqgs. (15) and (19) to determine the gain
and error covariance matrices K; and Pi;. The filtered
estimate is then given by

Xene = X1 + Kilza — hu(Xujim)] 24)

where h, is used to denote the measurement nonlinearity;
that is, the measurement is assumed to be described by

Z. = h(xi) + v 25)

Through the use of the extended Kalman filter, one can
hope to eliminate or reduce divergence. Note, however,
that the P./i—, and Py, matrices are still linear approxi-
mations of the true error covariance matrices. Further,
the nonlinear models f, and h, are themselves approxima-
tions of the actual physical system, so modeling errors
can still exist. Thus, the extended Kalman filter does not
insure the elimination of the divergence problem.

In a practical application one does not know the error
in the state estimate, so there are grounds for uneasiness
in using this method. Of course, the same type of problem
must be considered in any least-squares application and
we can return to Gauss for the means of judging the
behavior of the filter. Recall that he said that the esti-
mates should satisfy all the observations in the most
accurate manner possible. Thus, one is led to further
consideration of the residuals as a measure of filter per-
formance. Kailath?® pointed out recently that the residual
sequence (z, — HiXy1) is a white-noise sequence. Since
the residual can be computed explicitly, it can be examined
at each stage to verify that the residual (or innovations)
sequence has the appropriate statistical characteristics.
A method of controlling the divergence, based on the
residuals, has been proposed? ® in which the plant and
measurement noise covariance matrices Q, and R, are
chosen in a manner that is appropriate to cause the
residuals to have the desired properties. But this method
is essentially the same as choosing the least-squares
weighting matrices as a reflection of the accuracy of the
measurements (or plant). Thus, the least-squares aspect
continues to dominate the practical application of the
method.
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