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TRIGONOMETRIC SERIES

Mr. Chairman and Fellows of Section III of the Royal Society of Canada:

It was with apprehension that I looked forward to the time when, as
President of this Section, I would be called upon to give an address. To
prepare a mathematical talk for an audience that is predominantly non-
mathematical is a heavy undertaking. Fortunately I have a side interest
that often intrudes itself into your work. The Astronomer, the Chemist,
the Engineer and the Physicist are continually meeting with trigonometric
series as solutions of the differential equations that arise in the problems
they are called upon to solve. In fact the origin of the study of trigonometric
series was in the search for solutions of such equations, and no topic arising
out of applied and experimental work has been so great a challenge to the
professional mathematician or so great a stimulus to the advancement of
pure mathematics. The main purpose of my address is to show the extent
to which this is true. I shall go back to the beginning, describe the main
problems that have arisen, and give some indication of the manner in which
they have been solved. The time it has taken to settle the various stages
will be emphasized as a measure of the difficulties encountered. To bring
the subject up to the present in a general way is the purpose of the first .
part of the address. In the second part the proofs of the main-line theorems
will be ngen

PART 1

Introduction. There are at least four separate discussions of the
earlier phases of thie subject (1, 2, 3, 4). Consequently I shall take from
_ this period only what I need to illustrate the points I wish to make.

i. The period of d’Alembert, Euler and Daniel Bernoulli. Most
of you are familiar with the story of the vibrating string. Let an elastic
string be stretcheéd taut on the x-axis with ends at (/, 0), (—Z, 0). If this
string is displaced and released it vibrates in such a way that the ordinate
of a point on the string is a function of the time ¢ and the x-coordmate
of the point, y = y(¢, x).



- As early as 1747 the French mathematician d’'Alembert knew that this
function satisfied the differential equation-
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This in itself is remarkable wheu we consider that both Newton and Leib-
nitz who invented the Calculus were alive in. the early 1700’s. Between
1747 and 1753, d’Alembert, Euler and Bernoulli gave their attention to the
solution of this equation and showed that it involved representing the
initial pesition of the string at the time of release,

¥(0, x) = f(x),

by a trigonometric series of the form
(2) ' a0+ Z (axcos er/l'-}- bisin krx/1).

This posed two questions:

I. If (0, x) could be represented by such a series how could the co-
efficients a;, b be determined?

II. It was clear that there was a considerable degree of arbitrariness in
the way the string could be constrained in its initial position. For example
(0, x) could be in part a straight line, in part an arc of a circle, in part a
piece of a sine curve. Was it reasonable to expect that tlie single expression
(2) could represent a straight line on part of the interval (—/, ), a circle
on another part of this interval, and a sine curve on still another part?
To the mathematicians of that day this seemed absurd. In this point of
view Euler was the most emphatic. He took his stand on the ground that
‘the function (2) was periodic and could, therefore, represent only periodic
functions. He would not accept as a possibility that a series such as (2)
could represent a function in a certain interval and fail to represent the
function outside that interval. It seems that Euler never receded from this
position even though later he himself discovered such relations as

3) §=sinx-—%sin2x+%sin3x——...  —r<x<

The graph of the right side is, for all x, the periodic function in heavy
line in the accompanying diagram. The series represents the line y = x/2
only for values of x on —7 < x < x. But Euler saw in this and similar
problems no reason to believe that if an arbitrary function was given the
series (2) could be so determined that it would represent the function on
an interval. It appears that d'Alembert held much the same view in

regard to the pOSSlblllty of representing an arbltrary function by means of a
trigonometric series.
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In 1755 Daniel Bernoulli published a memoir in which he maintained that
the motion of the string ¥ (¢, x) is expressible in the form

) 50, DS A —kl—’r-’f e k—’l’“—‘
1
which, when ¢ = 0, reduces to :
(5) > Asin k_;rx_ ‘
5 1

Bernoulli considered that the initial position of displacement of the string
could always be represented by (5). Against this point of view d’Alembert
and Euler brought the fuil force of their arguments as outlined above.
Bernoulli’s analysis had been sketchy, and in places more speculative than
rigorous, which' left his position weak. He was, however, unshaken by the
objections of his opponents. He pointed out that an arbitrary function
defined on (—/, /) could be represented at a given finite set of m points by a
finite number of terms of (5) if the coefficients were properly chosen.
He, therefore, saw no reason for rejecting the possibility that the infinite
series of the form (5) could coincide with the values of an arbitrary function
at more than a finite number of points. .

In this brief sketch we have shown the uncertainties under which the
studies of trigonometric series began. A more complete story of these
~ beginnings can be found in the references cited above. What we wish to
emphasize here is that the d’' Alembert-Euler-Bernoulli controversy, with contri-
butions from Lagrange, went on for more than a decade without in any way
settling questions I and I1. A

In 1777 Euler led the way in showing that if 2 function could be repre-
sented as in (2) then the coefficients must of necessity be of the form

i . I
) X v f L f tysin 2= aa,
LJd.; l LJdo P

This was, after thirty vears, a partial answer to I.
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2. The contribution of Fourier. The next person to give serious
consideration to the representation of a function by means of a trigonometric
series was Fourier. He was interested in the transfer of heat in a conducting
medium. A~ simple problem of the kind he considered is the followmg
A long metal plate has one end on the interval (—/, /) on the x-axis and at
each point of this interval a constant source of heat is applied, which may
vary from point to point. The long edges of the plate are kept at a constant
temperature. Under these conditions a steady state will be reached and the
temperature 7" at a point (x,y) on the plate will then be a function of x
and y, T'(x, ¥). The constant source of heat distributed along the x-axis is
T(x,0) = f(x). It was at that time known that the differential equation
which this function 7'(x, y) satisfies is

3T
(M) : T + ay =)

It was also known that a solution of this equation for a given set of boundary
conditions involved representing the function T'(x, 0) = f(x) in the form
" (2). Fourier was a physicist. He wanted answers to applied problems.
Whether or not the steps he took were logically justifiable was not his
main concern. In 1807 he stated and used the following theorem.

Any single valued function f(x) deﬁned on (=1, 1) as represented over thi®
interval by a series of sines and cosines in the manner

() = + Z (akcos -+ bisin k‘;
where

=7 f f(t)cos di, by= —f f(t)sm——dt

If the interval s (0, l) then either. sines or cosines suffice, the series being in
the one case -

= 4
fx) = 3 bsin %rf’ with b, = %ff(t)sink—zrfdt,
1 0
and in the other case
= i
1) =% 4 3 areos K7 with 0 = 2 [ 70)c0s B s
2 P l [ 0 l

Fourier placed no restrictions on the functions other than integrability
which is implied by the definitions of the coefficients a;, b;. Fourier’s
statement was received with unbelief by those who had given serious
thought to the logical aspects of the problem.
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We shall see later that there were sound reasons for this unbelief. Fourier
himself was not as complacent in his attitude as the above remarks imply. -

. He did much in the way of verification of the formulas by working with

special cases and showing that for values of # for which it was practicable
to make the computations, the sum

+ Z (akcos + bis k}”)

was close to the value of the function. This did-not ensure that for larger
values of 7 the approximation was as good or better.

In spite of his best efforts Fourier accomplished nothing in the wey of logical
proofs ds to the class of functions that could be represented by a trigonometric
series. Nevertheless, what he did in the way of investigating special cases and in
the way of using trigonometric series in applied work was a valuable contribution
in recognition of which irigonomeiric series associated with a function f{x)
by means of the Euler formulas (6) have come to be called Fourier series.

The end of Fourier's investigations is nearly a hundred years from the
beginning of the study of trigonometric series. Yet the secrets of these
series were still withholding themselves. Such men as Euler, d’Alembert,
Lagrange, Bernoulli, walked on the very edge of these secrets without
falling upon them. Probably this failure was in some measure caused by the
narrow concept of a function which prevailed at that time. It was con-
sidered that a function is defined on an interval only if it is given by a
single formula on the interval. To quote from Langer (1, p. 5) “A more
conspicuous example of the confining effects of preconceptions is hardly to

be found.” That the work of the hundred years was so fruitless will appear -

all the more amazing when we see in Part II with what ease present-day_,
methods get at most of the facts.

& Considetations of notation.. Each term of the series (2) is penodxc
with period 2I. Hence if it represents a function f(x) on [—/, /] let this
function be defined outside of [—/, /] by penodxcnty with period 21. Then
(2) represents f(x) for all values of x. Set m:/l = x'. Then f(x) flx')7w) =
F(x'). Also : ;

F) = fo + 20) = f[l—("—i’—gf—)] - Bt +f2{r)'= F(x'-«) '

which shows that F(x’) is periodic with period 2. Also, thh this transfor-'
mation nt/l = ¢

dr = -11;] F(t")cos kt'dt’, by, = —:; F (t’ )sm kt'dt’



Again, smce the mtegrands in the formulas defining a,, 4, are periodic
‘ 2‘:, the integration may be taken over any interval of length
ﬁ periodic functien f(x) is given by (2) with coefficients
by (8), the periodic function F(x') is given by

Fi') = ‘—12 El_: (arcos kx’ -+ bysin kx")

g

2 A
iy -}; F(t')cos kt’dt' hy = —11; F(t’)sm ki'dt’.
k:lis thus seen tha.t the study of a function on an arbitrary interval
r!elatwae to its representation by a Fourier series can be reduced to the study
aﬁ a related function on the interval [0, 2a]. Consequently it is customary
_to start the study of Fourier series with an integrable function f(x) defined
on 0 € # < 2r and defined by periodicity with period 2# outside this
interval. » :
As noted above, it has now become the custom to call

;i < 2r
a = 1 f(t)cos kt dt, b = 3 f(t)sin kt dt,
)0 T Jo ;

r” Gee gg + > (axcos kx + bysin kx)
0 )

' respéctively the Fourier coefficients and the Fourier seriés of the function
f(x). We shall adopt this practice in what follows.

The first positive result, which was mdlcated by Euler in 1777, was
the followmg

Iff (x) s an integrable functwn on [0, 2] and

flx) = + Z (arcos kx + bysin kx)

then a; and b, must be the Fourzer coefficients.
Multiply both sides by cos kx and integrate between 0 and 2, to get

2

o ? 27
f(x)cos kx dx = %f cos kx dx alf cos x cos kx dx + . . .
0 0 o

2r
-+ akf cos’kx dx + . .
0

This procedure implies that the series obtained by multiplying by cos kx
is integrable term by term. Because the first of the relations

2r or
J‘ cos mx sin nx dx, f €os mx cos nx dx,
0 - 0

is zero for all m and » and the second is zero on = according as m = #;
m=mn;mn=0,1,2, ..., every term on the right is zero except the one

6



L

involving a; which is wa;. If B = 0 every term on the right is zero except
the first which is wae. Thus :

2x ‘ . :
=}1'.I:, f(t)cos kt dt, k=013 ..

We now see why the constant term of a Fourier series is written as ao/;‘?..
Otherwise this formula for g; would not fit when k& =-0. Similarl}y it can be
shown that 2

-

27
by == | f(O)sin Bt dt.
S

It follows from the foregoing that if an integrable function on [0, 2#] is
represented by a trigonometric series this series is the Fourier series of

g f(x). But this throws no light whatever on the problem of determining

whether or not a specific function can be represented by a trigonometric
series.

4. The contributions of Dirichlet. The first to reveal some of the
inner secrets of trigonometric series was the German mathematician Le-
jeune-Dirichlet. In 1829 he firmly established the following thecrem.

If the function f(x) defined on the interval [0, 27] hes only a ﬁmte number of
ordinary discontinuities and only a finite number of maxima and minima then,
if ay, by are the Fourier coefficients of f(x),

Splx) = = + Z (acos kx + bisin kx)

tends to f(x) at a value of % for which f(x) is continuous, and S,(x) tends to
{f(x 4+ 0) + f(x — 0)}/2 at a point of jump.

Here at last was progress. True it did not show that a continuous function .
with an infinite number of maxima and minima could be represented by a
Foutier series. Nevertheless, it was generally thought that this would come
as an incidental result in the consolidating of gains already made, and
interest waned. :

In 1876 du Bois-Reymond dashed ail hope of a complete conquest of the,
problem of representing a continuous function by a Fourier series. He
constructed a continuous function for which the Fourier representation failed
at a single point. T his led to an example where the represematwns failed at each
of an everywhere dense set of points.

a

5. Progress during the late 1800’s and early 1900’s. With du Bois-
Reymond’s discovery there was renewed interest, which led to the following
result. :



If f(x) is of bounded variation on the closed interval [0, 2x] then at every
© point x on [0, 2r] the Fourier series converges to {f(x + 0) + f(x — O)}/Z.f’

This is only a slight advance over Dirichlet’s results. If f(x) is of bounded
variation there is a number M such that for any set of non-overlapping
intervals (x;, x,), finite or infinite, the sum, 3_|f(x/) - f(x,)| is less than M.
It is easily shown that functions which satisfy Dirichlet’s conditions are
of bounded variation. Functions of bounded variation are slightly more '
- general than those which satisfy Dirichlet’s conditions in that such a func-
tion may have an infinite number of discontinuities and an infinite number
of maxima and minima. However, the discontinuities form at most a de-
numberable set and at every point of discontinuity both f(x 4+ 0) and
f(x — 0) exist. The point to be emphasized is that there are contmuousi
Sfunctions which are not of bounded variation. If this were not the case du
Bois-Reymond’s example would contradict the theorem concerning |
functions of bounded variation.

6. Advances in technique. During these years of the latter half of the
nineteenth century there was an intensive search for more powerful weapons f
of attack. This search culminated in two important discoveries. One was the |
modern abstract theory of integration, which was first formulated by the |
French mathematician Henri Lebesgue in 1902 and has come to be known as
Lebesgue integration. While this theory was worked out primarily . to deal
with trigonometric series, it has had a profound effect on the whole field of
analysis. Another idea which came out of this period and which has been
far-reaching in its affect on analysis is that of the summability of divergent
series. : :

Let s,, 2, . . . be the partial sums of an infinite series a; + a2 + . .
Let
On = QniS1 + Gn2S2 + . . . + @unSay

where each a,; is a real or complex number. If ¢, tends to a limit as n — o
the series @y 4+ a2 -+ . .. is said to be summable by means of the set of
numbers a,. If, for example, a, = 1/n, k = 1,2,...,n then o, is the
arithmetic mean of the sums sy, . . ., s,. If thén ¢, tends to a limit the series

is said to be summable by arithmetic means or summable (C, 1). The
Hungarian mathematician Cesiro was among the first to exploit and extend |
this general idea of summability.’ Hence the notation (C, 1).

~ In 1904 the Hungarian mathematician L. Fejér proved the following
theorem (6, 7):

Let the function f(x) be integrable on the interval [0, 2w) and let the limits
flxo + 0), f(xo — 0) exist at a pomt %o of this interval. Then the Fourier
series .



+ E (axcos kx + Bsin kx)

is summable (C, 1) to: {f(xo -4 0) + fxo — 0)}/2

From this it follows that the Fourier series of a function f(x) continuous on

[0, 27] 45 summable (C, 1) to f(x) at every point x. :
. Fejér's results may be obtained by means which involve only ordinary
integration; this is true of all the results we have so far stated concerning
trigonometric series. To go further it becomes necessary to use ideas which -
lead into the Lebesgue theory. It has been ndted that du Bois-Reymond
gave an example of a continuous function for which the Fourier series’
diverged at an everywhere dense set E. If a set is everywhere dense on an
interval (a, b) then on every interval (a’, »’) contained in (a, b) there are
an infinite number of points of the set. For example the rational numbers
are everywhere dense on any interval. There are functions of bounded
variation with points of discontinuity forming an- everywhere dense set on

[0, 2x]. We are thus.in a posxtlon which has the appearance of being ano-
malous.

There are continuous functions for which the Fourier series diverges at
an everywhere dense set. These are functions of bounded variation with
an everywhere dense-set of dxscontmumes for which the Fourier series
converges everywhere. .

This brings us to the end of the main events concerning functions inte-
grable in the ordinary sense. The set of divergence of the Fourier series of
the continuous function cited above and the set of discontinuities of a
function of bounded variation have a common property. Let E be the one
or the other of these sets. Let a positive number e, arbitrarily close to
zero, be given. There is then a set of non-overlapping open intervals
ai, as, . . . which contain all of E and which is such that the total length of
this set of intervals is less than e. Such a set is known as a nuil set. There
are null sets which are both non-denumerable and non-dense.

* Since the time of du Bois-Reymond there have been other examples of
continuous functions. whose Fourier series diverge at everywhere dense
sets which were null sets, but never at a set other than a null set. Can a
continuous function be constructed whose Fourier series diverges at the
points of a set which is not a null set? It was a consideration of this and
similar problems which led to a study of functions defined on sets other
than intervals and eventually to the modern point-set theory and the
abstract theories of integration. With this done, there arose another
problem.

V.

7. Functions which are not integrable. - If f(x) is integrable' on
[0, 27] in the ordinary sense or in the Lebesgue sense, and if f(x) is repre-

5.
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sented by a trigonometric series, then this series is the Fourler series of
f(x) There are, however, functions f (x) represented by trigonometric
series, o

(8) Fl ) =2 + }: (cxcos kx + dysin kx)

whlch are not integrable, elther in the ordinary or Lebesgue sense. An
~ example of such a function is

i ' : : sin(z + 1)x
(©) fo=BE R
Let T be the class of all such functions. For a given function f(x) in class T,
how can the coefficients in (8) be determined?

We now find ourselves at the beginning of a new period with the powerful
tools of summability, the point-set theory, and the Lebesgue theory of
integration all available and two fundamental questions outstanding:

I'. Is it possible to construct a continuous function whose Fourier
series dlverges at a set other than a null set?

I, If f(x) is a function in class T how can the coefficients ¢z, d; in (8)
be determined?

I’ is still open. There is some encouragement towards a positive answer
in the fact that a function, not' continuous but Lebesgue integrable, has been
constructed, whose Fourier series diverges everywhere (Kolmogorof's
example; 6, p. 175).

The answer to 11’ has come by stages, the final stage in one direction by a

Canadian mathematician, R. D. James (8, 9, 10). We conclude Part I

of this study with a general description of the steps that have, only recently,
led to the complete answer to II'.

A remarkably penetrating analysis of this problem, and a complete
solution, has been given by the French mathematician Arnaud Denjoy
(11, 12). Some indication of his methods will be given in Part II of this

address. Solutions have also been given by Marcinkiewicz and Zygmund -

(13), by Burkill (14, 15), and by James as noted above.

8. Generalized integrals. The stages on the road to the answer to
11’ have paralleled and in a large measure resulted from the search for an
answer to a fundamental problem in real varlable theory, Wthh we now
give in outline (16, pp. 140-164).

If we are given the function f(x) which is the derivative of some function
y = F(x) then the expectation is that

(10) : F(x) — F(a) = J:f(x) dx.

10
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In some simple cases, however, this expectatlon is not realizable. The classic
- example of this is

=l 1 .
f(?c)—szxn?—xcos;c—g, e x;ﬁ(‘),‘
=0, x =0.

The function f(x) is the derivative of

'

= Py = ain xlé EW0 Ry

-and is not integrable, either in the ordinafy sense or in the Lebesgue sense, '
Consequently (10) has no meaning. In this case there is only one point, the
origin, in the neighbourhood of which f(x) = F'(x) misbehaves, and

F&) = F(0) = lim f,. ool e,

But there are functions f(x) which are finite derivatives of other functions
F(x) and for which the points of misbehaviour are infinite, in fact, more
than a null set (16, pp. 148-149). In the years 1912-1915 (17, 18), Denjoy
devised an operation, now known as Denjoy integration (16, p. 158),

which is such that if f(x) is the finite derivative of a continuous functxon
F(x), then

D ’.If(x) dx = F(x) — F(a).

This operation . involves .a denumer/a.bly infinite number of stages (16
p. 154). Where does this leave us with problem I11’?

If the function f(x) in (8) is integrable in the Den]oy sense, specxal or
general, then

G = -}-rD f_ﬁf(x) cos kx dx, dy = % 2 F(x) sin kx dx.

This answers II’ for functions in class T which are Denjoy integrable
(5, p. 488). It does not, however, give the complete answer. There are.

functions f(x) for which (8) holds which are not integrable even in the
_Denjoy sense. For example if

N

fx) = 2 bsinnx, 0<x<2x
1

where b, decreases and tends to zero and Z b,/n diverges, then f (x) is not

D—mtegrable (12, pp. 42, 43). The functlon in (9) above is in this category

11
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: :

During the period that Denjoy was developing his theory of integration,
problems in differential equations arose in which the derivatives, dy/dx =
f(x), were not integrable. To deal with non:integrable functions, O. Perron
- considered - functions ¥ (x), ¢(x) en [a, b] with the following properties.
. These functions are continuous, ¥(a) = ¢(e) = 0 and, if D ¢(x) is the|
* lower derivative of ¢(x), D¢(x) the upper derivative of ¢(x), then, except’
possibly for a null set, '

© ‘ Dy@) > f(x), Do¢x) < f(x), o '
* and for all x except possibly a denumerable set, _ 1
(ii) : . Dy@) > = =, Do) < » |

Let ¥ (&) = inf ¢(b), ®(b) = sup ¢(b). If ¥(b) = ®(b) the common value is
the Perron integral of f(x) over [a, 8]. ‘

The functions ¢(x) and ¢(x) are called major and minor functions
respectively of f(x). It is shown that if the P-integral over [a, b] exists
then the P-integral exists over [a, x],a < x < b. Consequently, if a function
F(x) is continuous on [a, b] and has a finite derivative f(x) at each point of
[a, b], then F(x) — F(a) is both a major function and a minor functxon to
f (x) It then follows that

F(x) F(a) Pff(x)dx

This method of deﬁmng an integral is sxmpler than that of Denjoy which
involves an infinite number of steps. It can be said, however, that Denjoy's
method provides a constructive process which can be carried out on f(x)
to arrive at the value of the integral. There is no indication in Perron’s
definition how to determine for a given f(x) the major and minor functions
¥(x), ¢(x). Consequently it can be questioned if Perron has actually.
defined an integral.

¥or a long time there was speculatlon as to the relative generahty of
these two definitions. Finally, after ten years,.it was shown that they are
equivalent (18, pp. 250, 251; 5, p. 284). Consequently the Perron integral
carries us no further along the road to the answer to II’ than does the
integral of Denjoy. Nevertheless, it is Perron’s ideas that have been
generalized by Marcinkiewicz and Zygmund by Burkill and by James to
give in brief form the complete answer.

'

9. The work of Marcinkiewicz and Zygmund Burkill and James.
Let 4 ,
(1) F(x)= %" + D (cicos kx + dysin kx), on —rLx < m,

. :

12



' where ¢; and d; tend to zero, and let f(x) be deﬁnéd by periodicity with

period 27 outside this interval. Consider the series obtained by mtegratmg
formally the right-side term by term,

k

Since the coefficients ¢;/k, d;/k in this series tend to zero more rapidly
than the coefficients ci, d; in (11), and since (11) converges, it is reasonable

, CoX dicos kx — gsin kx
(12) cC+E-3 .

| to hope that (12) converges. That this is not the case is an illustration of

the unpredictable, behaviour of trigonometric series. However, it is known
that (12) converges, except possibly for a null set. If in (12) C = 0 then

(13) Bt o gl __2_ i El dycos kx ; Gsin kx

is defined on —x < x < 7 except for at most a null set. Marcinkiewiéz
and Zygmund (13, pp. 35-43), and also Burkill (14, 15), define generalized

‘derived numbers and derivatives in such a way that the generalized deri-

vative of F(x) is, except for a null set, the function f(x) in (11). Then in
Perron’s definition of major and minor functions they replace continuity
by a type of mean continuity, and upper and lower derived numbers by these
generalized derived numbers and arrive at a generalized integral for whlch'
the following is true.

If f(x) is a functlon in class 7" then the trigonometric series Wthh repre-
sents it, as in (11), is such. that

= — J‘f(t) cos kt dt, = ! ff(t\ sin kt dt-

where w is a set on (—1r, 7) which includes all the pomts of this, mterval
except a null set.

We come finally to the approach used by James If the series (11) is
formally integrated term by term twice, the resultmg series converges
everywhere to a continuous function

Y 2 .
(14) ) _c_%:_ 57 Zc,,c.os kx'+dksmkx LR e
: £ : 3 1

E ;
The generalized second derivative, D?F(x), of a function F(x) is the limit
as h—0, h posntxve, of the ratio

Fx + h) + F(x = h)= 2F(x)

The upper and lower limits of this ratio are denoted respectively by
D*F(x), D*F(x). If D*F(x) is finite for a point x, it follows that the ratio

{F(xo + k) + F(xo — k) = 2F(x0)}/h — 0 as b — 0, in which case F(x)

18



is said to be smooth at x,. It is known (6, p. 271; 7, p. 429) that if F(x) is

the function defined by (14) then D?F(x) exists and is equal to the function

1 f(x) defined in (11). Relative to any function f(x) James replaces the

Perron conditions by the following. .

The functions M (x), m(x) are respectively major and minor functlons
to f(x) if they are continuous, if M(a) = M(b) = m(a) = m(b) = 0, and
if D*M(x) > f(x), D?m(x) < f(x), except possibly for a null set, DM
(x) > — o, D*M(x) < ®, except possibly for a denumerable set at t the
points of whlch M(x) and m(x) are smooth.

James then defines what he calls the P*-integral of f(x) as the common.

bound, if it exists, of the sets of functions M(x), m(x). Actually, if f(x) is
the function defined by (11) then this common bound is the function F(x)
defined by (14), if the constants C and C’ are properly chosen. In general
if f(x) is any functlon in class T then the coefﬁcxenta in (11) are given

by :
G = = ';rl'ng F(t) cos kt dt dy = — -,];—ng f « f(¢)sin ki dt.

~2x,0,27 —2m,0, 21
The significance of the range of integration (=2, 0, 2r) will be considered
in Part II, §14.

The main points in the development of trigonometric series have now
been covered. Their apparent simplicity gives cause for amazement that
it has taken so long to settle them. Another cause for amazement is the vast
accumulation of results that have arisen as side issues to these main con-
siderations. Some indication of the scope of the whole subject of trigonomet-
ric series may be obtained from (6). :

PART I1

Introduction. In this part of the address we give the proofs of the
results outlined in Part 1. We realize that Theorems 1-7 are in-the more
elementary parts of any treatise on Fourier series (6, pp. 14-63;.7, pp.

899-416). We give them in order to make our story complete, and also to -

emphasize the ease and brevity with which the methods of modern mathe-
matics handle problems which for so long baffled the ablest mathematicians.
Except for Theorem 3, which can be omitted, no knowledge beyond that
which includes ordinary integration is presumed before Section 13. Then a

knowledge of the elements of the Lebesgue theory (7, Chapters X-X1;-

16, Chapters II-V) is required.
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