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Preface

Diophantine geometry and the study of rational points on algebraic varieties
have greatly influenced and continue to revolutionize modern algebraic geometry.
The general philosophy is that “the geometry determines arithmetic behaviour”.

It is conjectured that there are many rational points (at least after a finite
extension of the base field) on “special” varieties, a class of varieties introduced
by Campana which includes rationally connected and Calabi—Yau varieties. Con-
versely, the conjecture of Bombieri-Lang predicts that varieties of general type
should have “few” rational points. These conjectures and philosophy are the sub-
ject of intense activity.

One of the fascinating aspects of these questions is their relations with complex
analytic geometry. After Lang and Vojta, we expect that arithmetic properties of
an algebraic variety correspond via value distribution theory to complex hyperbolic
properties through a dictionary which translates properties of rational points into
properties of holomorphic curves. For instance, for special varieties (in the sense
of Campana) it is conjectured that the Kobayashi pseudo-distance is trivial, and
that such varieties have many holomorphic curves, and in the simply connected
case, many rational curves. Much work has been done to establish the expected
properties which are the complex geometric counterpart to the above mentioned
conjectured results in arithmetic.

In June 2013 a thematic month around these topics was organized at the CRM
in Montreal supported in part by an ANR project grant. It was also generously
supported by the NSF and locally supported by the CRM and CIRGET. Specialists
from around the globe introduced the latest advances on the subject and specialized
mini-courses were given geared to young researchers.

In this proceedings volume we gather the lecture notes of some of the mini-
courses of the thematic month and contributed papers by key specialists in these
areas.

Carlo Gasbarri
Steven Lu
Mike Roth
Yuri Tschinkel
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Some applications of p-adic uniformization to algebraic
dynamics

Ekaterina Amerik

ABSTRACT. We describe how certain simple p-adic techniques can be applied
to get information about iterated orbits of algebraic points under a rational
self-map of an algebraic variety defined over a number field.

The purpose of these notes is to give a brief survey of several topics at the
limit of geometry and arithmetics, where some fairly elementary p-adic methods
have led to highly non-trivial results. These results are recent but not brand-
new: all proofs have been published elsewhere. My hope and reason for putting
them together is that this might facilitate further progress, in particular by young
mathematicians or those who are new to the field. Since I am a geometer which only
meets arithmetics by accident, the point of view in these notes is quite biased. The
reader is encouraged to consult the texts by other people who have contributed
to the subject: in particular, the forthcoming book by Bell, Ghioca and Tucker
[BGTbook] promises to be very interesting.

The notes are written for the proceedings volume of CRM Montreal thematic
program “Rational points, rational curves and entire holomorphic curves on alge-
braic varieties” in June 2013. During the writing of the notes, I was also preparing
a mini-course on the subject for ANR BirPol and Fondation Del Duca meeting
“Groupes de transformations” in Rennes in June 2014. I am grateful to the orga-
nizers of both activities for giving me this opportunity to speak. Thanks also to
Dragos Ghioca for sending me a preliminary version of [BGTbook| and answering
a few questions.

1. A motivation: potential density
Let X be a projective variety over a field K.

DEFINITION 1. Rational points of X are potentially dense over K (or, as one
also sometimes says, X is potentially dense over K ) if there is a finite extension L
of K such that the L-points are Zariski dense in X .

The reason for looking at the potential density rather than at the density
of K-rational points is that the potential density behaves much better from the
geometric point of view. Indeed, even a plane conic over the rationals can have
a dense set of rational points or no rational points at all; whereas if we look at
the potential density, we may at least hope that the varieties which share similar

(©2015 American Mathematical Society



4 EKATERINA AMERIK

geometric properties should be potentially dense (or not potentially dense) all at
once.

If X is rational (that is, birational to P™), or, more generally, unirational (that
is, dominated by P") over K, then rational points are obviously potentially dense
on X. Indeed, choose L such that the unirationality map f : P" --» X is defined
over L. Then the images of L-points of P are L-points of X and they are Zariski
dense in X since f is dominant and L-points are dense on P™. More generally, a
variety dominated by a potentially dense variety is itself potentially dense.

It is certainly not true in general that a variety which dominates a potentially
dense variety is itself potentially dense. However this is true in an important partic-
ular case: if f: X — Y is a finite étale morphism and Y is potentially dense, then
so is X. This follows from Chevalley-Weil theorem (see for example [S]). The idea
is that points in the inverse image of x € X (K) are points over finite extensions
of degree equal to deg(f) and ramified only at a fixed (that is, independent of z)
finite set of places. There is only a finite number of such extensions.

Unirational varieties share many other properties of the projective space. For
instance, the tensor powers of the canonical line bundle K x on such a variety X
have no sections: indeed, a section of Kjeg"‘, m > 0, would pull back to P* and give
a section of a tensor power of Kpn (by Hartogs’ extension theorem), but no such
section exists.

On the opposite geometric end, we have the wvarieties of general type: these
are the varieties on which the tensor powers K§™ have “lots of sections”. More
precisely, a smooth projective variety X is said to be of general type if the map
defined by the linear system |K$™| is birational to its image for some m > 0. The
simplest examples are curves of genus g > 2, or smooth hypersurfaces of degree
>n+ 2 in P". The following conjecture is very famous:

CONJECTURE 2. (Lang-Vojta) A smooth projective variety X which is of gen-
eral type cannot be potentially dense over a number field K.

Up to now this is known only for curves and for subvarieties of abelian varieties,
by the work of G. Faltings.

Lang-Vojta conjecture implies that varieties dominating a variety of general
type cannot be potentially dense over a number field. One might ask whether this
should lead to a geometric characterization of potentially dense varieties.

The naive guess is wrong: one can construct a surface which is not of general
type and does not dominate any curve of genus g > 2, yet it is not potentially
dense, since it admits a finite étale covering which does map onto a curve of higher
genus, and the potential density is stable under finite étale coverings. This seems to
be first observed by Colliot-Thélene, Skorobogatov and Swinnerton-Dyer in [CSS].
The idea is to take an elliptic surface X over P! with suitably many double fibers,
so that locally the map to P! looks like (z,y) + u = 2. Then the ramified
covering C' of the base which eliminates these multiple fibers (that is, locally looks
like z > u = 22, so that the fibered product is singular and its normalization is
étale over X) will have genus at least two.

F. Campana suggests in [C] that the potentially dense varieties are exactly the
so-called special varieties. Roughly speaking, these are the varieties which do not
dominate orbifolds of general type: if f : X — B is a fibration with certain good
properties (which are achieved on suitable birational models), one can define an
orbifold canonical bundle K5 + A by taking into account the multiple fibers of f,
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and this bundle should not have too many section. For the moment, proving this,
or even the “easier” direction that special varieties should be potentially dense,
looks quite out of reach.

In any case, all existing philosophy seems to imply that the varieties with
negative canonical bundle (the Fano wvarieties) or trivial canonical bundle must
be potentially dense. There is a reasonable amount of evidence for this in the
Fano case: indeed many Fano varieties are known to be unirational, and when
the unirationality is unknown the potential density still can sometimes be proved
(see for example [HarT]). Also, potential density is known for tori (and it shall be
explained in this survey in a particularly elementary way). But the case of simply-
connected varieties with trivial canonical class remains mysterious: indeed, even
for a general K3 surface the answer is unknown, and moreover there is no example
of a potentially dense K3 surface with cyclic Picard group (that is, “general” in the
moduli of polarized K3).

Bogomolov and Tschinkel [BT] proved the potential density of elliptic K3 sur-
faces.

THEOREM 3. Let X be a K3 surface over a number field K. If X admits an
elliptic fibration, then X is potentially dense.

Idea of proof: Construct a multisection C which is a rational curve (so has a
lot of rational points) and is non-torsion, that is, the difference of at least two of its
points on a general fiber is non-torsion in the jacobian of this fiber. Then one can
move C' along the fibers by “fiberwise multiplying it by an integer” and produce
many new rational points in this way.

More generally, let X be a variety equipped with a rational self-map f : X --»
X, both defined over a number field K (such as the fiberwise multiplication by k
on an elliptic surface; this exists for any k € Z when the surface has a section and
for suitable k if not). It is a natural idea to use f to produce many rational points
on X: indeed f sends rational points to rational points.

This approach has first been worked out by Claire Voisin and myself [AV] to
give the first example of a simply-connected variety with trivial canonical class
which has Picard number one (so is “general” in the polarized moduli space) and
has potentially dense rational points. Our example is as follows.

Let V be a cubic in P° and X = F(V) C Gr(1,5) be the variety parameterizing
the lines on V. A simple computation shows that X is a smooth simply-connected
fourfold with trivial canonical bundle. Moreover it can be seen as a higher dimen-
sional analogue of a K3 surface: as shown by Beauville and Donagi [BD], X is
an irreducible holomorphic symplectic manifold (that is, H??(X) is generated by
a single nowhere degenerate form o), deformation equivalent to the second punc-
tual Hilbert scheme Hilb*(S), where S is a K3 surface (and actually isomorphic to
Hilb?(S) when the cubic V is pfaffian).

ProrosiTION 4. (C. Voisin) X admits a dominant rational self-map f : X --»
X of degree 16.

Sketch of proof: Let us describe the construction: for a general line [ on V,
there is a unique plane P tangent to V along [ (indeed the normal bundle N;y =
O, ® O; ® Oy(1), which makes this unicity appear on the infinitesimal level). One
defines f(l) as the only line which is residual to [ in the intersection P NV, and
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one shows (using, for example, Mumford’s trick on algebraic cycles and differential
forms) that f multiplies o by —2.

THEOREM 5. ([AV]) For “most” cubic 4-folds V defined over a number field,
the corresponding variety X = F (V') (which is defined over the same number field)
has cyclic geometric Picard group and is potentially dense.

What is meant by “most” can be made precise, but this is a rather complicated
condition. Since it is not related to our main subject, let us only mention that the
parameter point of the cubic fourfold in question should be outside of a certain thin
subset, like in Hilbert irreducibility theorem.

The proof, too, is long and involved; in fact most of my contribution to the
main subject of these notes grew out of a search for a more elementary argument.
Let us only mention the starting point: we consider a family of birationally abelian
surfaces ¥4, t € T covering X (the existence of such a family was observed by Claire
Voisin in relation to Kobayashi pseudometric issues) and remark that since rational
points are potentially dense on ¥, for algebraic ¢, it is enough to find an algebraic
t such that the iterates f*(%;) are Zariski dense in X.

It turns out to be surprisingly difficult to show by the methods of complex ge-
ometry that the iterates of something algebraic are Zariski dense. Let me illustrate
this point by explaining the difference with the transcendental situation.

The following theorem has been proved by Campana and myself in the complex
geometry setting.

THEOREM 6. Let X be a projective variety and f : X --+ X a dominant
rational self-map, both defined over an algebraically closed field K. Then there is a
dominant rational map g : X --+ T to a projective variety T, such that gf = g and
for a sufficiently general point x € X, the fiber of f through x is the Zariski closure
of the iterated orbit Os(z) = {f*(z),k € Z}.

One can always Stein-decompose g to arrive to a map with connected fibers
preserved by a power of f. The theorem thus implies that if no power of f preserve
a non-trivial rational fibration (and this is something which often can be easily
established by geometric methods, see for example [AC], theorem 2.1 and corollary
2.2), the orbit of a sufficiently general point is Zariski dense. If, on the contrary,
some power of f does preserve a fibration, then this is obviously not the case.

Unfortunately “sufficiently general” in the theorem means “outside a countable
union of proper subvarieties” (the theorem is proved by looking at the Chow com-
ponents parameterizing f-invariant subvarieties and discarding the families which
do not dominate X). That is, when the field K is uncountable, most x € X are
indeed general in this sense; but the theorem does not give any information when
K is countable, since it might happen that no K-point is sufficiently general!

In particular, we still do not know whether there are algebraic points on the
variety of lines of a cubic fourfold which have Zariski-dense iterated orbit under f.
What we do know is that f does not preserve a rational fibration, and neither do
its powers, by [AC], theorem 2.1; but apriori the iterated orbits of algebraic points
can have smaller Zariski-closure than those of general complex points.

One would like to conjecture that in reality it never happens: this is already
implicit in [AC].

CONJECTURE 7. Let X be an algebraic variety with a dominant rational self-
map f : X --+ X defined over a number field K. Consider the map g : X -——» T
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from theorem 6, and let d denote its relative dimension. Then there exists an
algebraic point x € X(Q) such that the dimension of the Zariski closure of Of(x)
1s equal to d.

Some less general versions have been formulated by other authors; for instance,
the following conjecture has been made by Shouwu Zhang. For X a smooth projec-
tive variety, let us call an endomorphism f : X — X polarized, if there is an ample
line bundle L on X such that f*(L) = L% with ¢ > 1.

CONJECTURE 8. (Zhang) Let X be a smooth projective variety and f : X — X
be a polarized endomorphism of X defined over a number field K. Then there exists
a point x € X(Q) with Zariski-dense iterated orbit Of(zx).

Note that a polarized endomorphism cannot preserve a fibration. Indeed, oth-
erwise let F' be a fiber; one then should have deg(f|r) = deg(f). But the former is
q@™(F) and the latter ¢#™(X) | a contradiction.

Therefore Zhang’s conjecture would follow from conjecture 7. Indeed, since no
power of f preserve fibrations, T is a point and if the conjecture 7 is true, there is
an algebraic point with Zariski-dense orbit.

In what follows, we shall try to explain some p-adic ideas towards the proof of
this conjecture.

One should mention, though, that there is no hope to prove the potential
density of all special varieties using rational self-maps, as the self-maps do not
always exist. For instance, Xi Chen [Ch] proved that a general K3 surface does not
admit a non-trivial rational self-map. Nevertheless, an interesting example (variety
of lines of a cubic fourfold) has been studied in this way, and hopefully more shall
follow.

Independently of potential density issues, conjecture 7, as well as its weaker
versions, looks quite hard. When the ambient variety has a large family of rational
self-maps, for instance, is rational, Proposition 13 below indicates that it should be
true for a "sufficiently general” of them, in some sense. For self-maps of a particular
shape, one can perform explicit computations. Xie Junyi [X], building on results
by myself [A] and by Serge Cantat [Can], has remarked that the conjecture holds
for birational maps of surfaces.

Answering a question by one of the referees, let us also mention that Bell,
Ghioca and Reichstein have recently remarked that there is an analogue of theorem
6 for a semigroup of rational self-maps rather then a single map; therefore it makes
sense to make an analogous conjecture for e.g. finitely generated semigroups.

2. Near a fixed point

While working on problems of holomorphic dynamics, one is often led to con-
sider the behaviour of the map in a neighbourhood of a fixed point. In [ABR], we
have tried to work out some rudiments of a similar approach in algebraic geometry
in order to simplify and render more explicit the proof of potential density of the
variety of lines on a cubic fourfold from [AV]. Somewhat later, we have learned
that similar ideas were exploited by Ghioca and Tucker in order to settle a case
of the so-called dynamical Mordell-Lang conjecture to which we shall return in the
next section.

Endomorphisms often have periodic points: for instance, a theorem by Fakhrud-
din [F] asserts that a polarized endomorphism has a Zariski-dense subset of periodic
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points. Replacing f by a power if necessary, we may assume that some periodic
point is actually fixed.

If X = F(V) is the variety of lines of a cubic in P® and f : X --» X is the
rational map which sends a general line [ to the line I’ which is residual to [ in the
intersection of V' with the plane tangent to V along [, then the fixed points are,
obviously, the lines such that there is a plane tritangent to V along this line (and
not contained in the indeterminacy locus, that is, this tritangent plane should be
the only plane tangent to V' along ). An explicit computation shows that such
lines form a surface on X, and no component of this surface is contained in the
indeterminacy locus (one can, for instance, remark that the fixed surface is certainly
lagrangian, because of the identity f*c = —20, where ¢ is the symplectic form, and
that the indeterminacy locus is not lagrangian because of the computations in [A0];
but there is probably a much easier way).

2.1. Linearization in a p-adic neighbourhood. Let X be arbitrary, and
let g be a fixed point of a rational map f : X --+ X. Assume that everything is
defined over a number field K. We shall denote by Ok the ring of integers, by
p C Ok an ideal, by O, and K, the p-adic completions.

Our starting observation is that for a suitable p, one can find a p-adic neigh-
bourhood Oy 4 (that is, the set of p-adic points reducing to the same point as g
modulo p in a suitable model of X') which is invariant under f, and f is well-defined
there.

One can define and describe Oy 4 in a very down-to-earth way, without talking
about models, by a p-adic version of the implicit function theorem.

Namely, following [ABR], choose an affine neighbourhood U C X of ¢, such
that the restriction of f to U is regular. By Noether normalisation lemma, there
is a finite K-morphism m = (z1,...,2») : U — A% to the affine space, which
is étale at ¢ and which maps g, say, to 0. Then the K-algebra O(U) is integral
over K[zy,...,x,], i.e., it is generated over K|z1,...,z,] by some regular func-
tions T41,..., T, integral over K|zi,...,z,]. We can view Z,i1,...,Z, and
f*x1,..., f*T, as power series in x1,...,2, with coefficients in K (indeed the co-
ordinate ring of U is embedded into the local ring of ¢ and the latter is embedded
into its completion). Since everything is algebraic over K(zy,...,x,), one can show
that all coefficients lie in a finitely generated Z-algebra (this goes back to Eisen-
stein for n = 1, see [ABR], lemma 2.1). In particular, for almost all primes p, the
coefficients of our power series are p-integral. Take such a p satisfying the follow-
ing extra condition: for n < i < m, let P; be the minimal polynomial of x; over
Zy,...,Tn. We want z;(q) to be a simple root of P;(q) modulo p (this condition
is obviously expressed in terms of the non-vanishing of derivatives modulo p, and
thus also holds for almost all p).

Set

Opq,s = {t € U(K})|zi(t) = zi(q) (mod p®) for 1 <i<m},

and let Op 4 = Op g1
View all our functions z;, f*z; as elements of Oy[[z1,...,z,]]. The following
properties are then obvious by construction.

ProrosITION 9. ([ABR|, Prop. 2.2) (1) The functions xy,. ..z, give a bijec-
tion between Oy 4 s and the n-th cartesian power of p°.
(2) The set O, 4 contains no indeterminacy points of f.



