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Preface to the Second Edition

In the quarter century since the first edition of this book appeared, tremendous
development has occurred in operator theory and the topics covered here. However,
the new edition remains unchanged except that several mistakes and typographical
errors have been corrected. Further, a brief report on the current state of the double-
asterisk, open, problems is given along with references. No attempt is made to
describe other progress that has been made in the study of Toeplitz operators and
related topics nor has the bibliography been updated.

Still, it is hoped that a new generation of students will find useful the introduction
to operator theory given here.

College Station, Texas Ronald G. Douglas
July 1997



Preface to the First Edition

Operator theory is a diverse area of mathematics which derives its impetus and
motivation from several sources. It began as did practically all of modern analysis
with the study of integral equations at the end of the last century. It now includes
the study of operators and collections of operators arising in various branches
of physics and mechanics as well as other parts of mathematics and indeed is
sufficiently well developed to have a logic of its own. The appearance of several
monographs on recent studies in operator theory testifies both to its vigor and
breadth.

The intention of this book is to discuss certain advanced topics in operator
theory and to provide the necessary background for them assuming only the
standard senior-first year graduate courses in general topology, measure theory,
and algebra. There is no attempt at completeness and many “elementary” topics
are either omitted or mentioned only in the problems. The intention is rather to
obtain the main results as quickly as possible.

The book begins with a chapter presenting the basic results in the theory of
Banach spaces along with many relevant examples. The second chapter concerns
the elementary theory of commutative Banach algebras since these techniques are
essential for the approach to operator theory presented in the later chapters. Then
after a short chapter on the geometry of Hilbert space, the study of operator theory
begins in earnest. In the fourth chapter operators on Hilbert space are studied and
a rather sophisticated version of the spectral theorem is obtained. The notion of
a C*-algebra is introduced and used throughout the last half of this chapter. The
study of compact operators and Fredholm operators is taken up in the fifth chapter
along with certain ancillary results concerning ideals in C*-algebras. The approach
here is a bit unorthodox but is suggested by modern developments.

The last two chapters are of aslightly different character and present a systematic
development including recent research of the theory of Toeplitz operators. This

vii



viit Preface to the First Edition

latter class of operators has attracted the attention of several mathematicians
recently and occurs in several rather diverse contexts.

In the sixth chapter certain topics from the theory of Hardy spaces are developed.
The selection is dictated by needs of the last chapter and proofs are based on the
techniques obtained earlier in the book. The study of Toeplitz operators is taken
up in the seventh chapter. Most of what is known in the scalar case is presented
including Widom’s result on the connectedness of the spectrum.

At the end of each chapter there are source notes which suggest additional read-
ing along with giving some comments on who proved what and when. Although
a reasonable attempt has been made in the latter chapters at citing the appropriate
source for important results, omissions have undoubtedly occurred. Moreover,
the absence of a reference should not be construed to mean the result is due to
the author.

In addition, following each chapter is a large number of problems of varying
difficulty. The purposes of these are many: to allow the reader to test his under-
standing; to indicate certain extensions of the theory which are now accessible; to
alert the reader to certain important and related results of which he should be aware
along with a hint or a reference for the proof; and to point out certain questions for
which the answer is not known. These latter questions are indicated by a double
asterisk; a single asterisk indicates a difficult problem.

Stony Brook, New York Ronald G. Douglas
August 1971
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Chapter 1

Banach Spaces

1.1 We begin by introducing the most representative example of a Banach space.
Let X be a compact Hausdorff space and let C(X) denote the set of continuous
complex-valued functions on X. For f) and f; in C(X) and A a complex number,
we define:

1) (i + 2)x) = filx) + fa(x);
(2) A fL)(x) = Afi(x); and
3) () = fi(x) falx).

With these operations C(X) is a commutative aigebra with identity over the
complex field C.

Each function f in C(X) is bounded, since it follows from the fact that f is
continuous and X is compact that the range of f is a compact subset of C. Thus the
least upper bound of | f| is finite; we call this number the norm of f and denote it by

1 flleo = sup{|f ()] : x € X}.
The following properties of the norm are easily verified:
(1) | flleo = 0if and only if f = 0;
) 1[Afileco = [A[1[ flloos

3 NS +glloo = 1 flleo + lIglleo; and
@ 1l felleo = 1 flleollglloo-

We define a metric p on C(X) by o(f, g) = ||f — glleo- The properties of a
metric, namely,

(1) p(f,g) =0ifand onlyif f =g,
(2) p(f,8) = p(g, f),and
(3) o(f,h) < po(f.8)+ (g, h),

follow immediately from properties (1)—(3) of the norm, It is easily seen that
1



2 Banach Algebra Techniques in Operator Theory

convergence with respect to the metric p is just uniform convergence. An important
property of this metric is that C(X) is complete with respect to it.

1.2 Proposition. If X is a compact Hausdorff space, then C(X) is a complete
metric space.

Proof If { f,)72, is a Cauchy sequence, then
Lfa(x) = S GO S N1 fa = fnlloo = 0 (fns f)

for each x in X. Hence, { f, (x)}52,, is a Cauchy sequence of complex numbers for
each x in X, so we may define f(x) = lim,_, f,(x). We need to show that f isin
C(X) and thatlim,, e || f — falloo = 0. To that end, given& > O, choose N such
thatn, m > N implies || f» — fmlloo < €. For xg in X there exists a neighborhood
U of xo such that | fy(x0) — fy(x)| < & for x in U. Therefore,

1f(x0) = f)I < lim | fu(x0) — fiv(x0)] + Jim | i (x0) — fa (%)l

+ im | fyv(x) = fa(x)l

<3¢
which implies f is continuous. Further, for n > N and x in X, we have
1faG) = O] = [ fo(x) = lim £ (x)| = lim | f,(x) = fu(x)|
m—o0 n—o00
< limsup|ify = fulle <.
m-—>00
Thus lim, .o I fr = flleo = 0 and hence C(X) is complete. [

‘We next define the notion of Banach space which abstracts the salient properties
of the preceding example. We shall see later in this chapter that every Banach space
is isomorphic to a subspace of some C(X).

1.3 Definition. A Banach space is a complex linear space & with a norm || ||
satisfying

(1) {Ifll = Oifand onlyif f =0,
@) lIAfll = A Il for Ain C and f in %, and
G Nf+gllslIfH+1lgll for fandgin X,

such that  is complete in the metric given by this norm.

1.4 Proposition. Let & be a Banach space. The functions

a: % x % — Xdefineda(f, g) = f+g,
s: Cx % — ¥ defined s(A, f) = Af, and
n: X — R* defined n(f) = || f|)

are continuous.
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Proof Obvious. [

1.5 Directed Sets and Nets The topology of a metric space can be described in
terms of the sequences in it that converge. For more general topological spaces
a notion of generalized sequence is necessary. In what follows it will often be
convenient to describe a topology in terms of its convergent generalized sequences.
Thus we proceed to review for the reader the notion of net.

A directed set A is a partially ordered set having the property that for each pair
a and B in A there exists y in A such that y > o and y > B. A net is a function
@ —> A, on adirected set. If the A, all lie in a topological space X, then the net is
said to converge to A in X if for each neighborhood U of A there exists @y in A such
that A, is in U for @ > ay. Two topologies on a space X coincide if they have the
same convergent nets. Lastly, a topology can be defined on X by prescribing the
convergent nets. For further information concerning nets and subnets, the reader
should consult [71].

We now consider the convergence of Cauchy nets in a Banach space.

1.6 Definition. A net{f,}yc4 inaBanach space X is said to be a Cauchy net if for
every £ > 0, there exists ag in A such that o, a; > ap implies || fy, ~ fa,]] < €.

1.7 Proposition. In a Banach space each Cauchy net is convergent.

Proof Let { fy}aea be a Cauchy net in the Banach space %. Choose &, such that
a > o) implies Hf,, - f,,,ﬂ < 1. Having chosen {o}7_, in A, choose | > «,
such that @ > a4 implies

1

n+1

The sequence {f,, n1 is clearly Cauchy and, since ¥ is complete, there exists f

in & such that limy o0 fo, = f

Itremains to prove thatlimyea fo = f.Givene > 0,choosen suchthat1/n < £/2
and || fo, ~ f|| < £/2. Then for a > a, we have

M= FU S Vo = fual + [ fio = F] < Un+e/2 <6 .

Hfa - fdn+lH <

We next consider a general notion of summability in a Banach space which will
be used in Chapter 3.

1.8 Definition. Let {f,},es be a set of vectors in the Banach space Z. Let
¥ = (F C A : Ffinite). If we define F; < F, for F, C F,then ¥ is a

directed set. Foreach F in &, let gr = Y wer fo. If the net {grlres converges to
someg in&, thenthe sum 3~ , f is said toconvergeand we writeg = Y, f.

1.9 Proposition. If {fy}eea is a set of vectors in the Banach space ¥ such that
Y sea I fl) converges in the real line R, then 3 aea Ja converges in .



