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Preface

A group of microbiologists from China, Germany, and additional European coun-
tries met in Beijing in September 2007 and held a conference entitled “Microbes
and the Environment”. The purpose of this conference was o evaluate how mi-
crobes (a) shape the planet and (b) might be harnessed to solve environmental
problems. This book provides an overview of many of the contributions made
during this conference.

We gratefully acknowledge sponsors that provided support for this confer-
ence, including the China-Germany Scientific Center [a center jointly funded by
the Deutsche Forschungsgemeinschaft (DFG) and National Natural Science
Foudation of China (NSFC)], the Chinese Society for Microbiology, the Institute of
Microbiology at Chinese Academy of Sciences, and the University of Bayreuth.
We are likewise indebted to Yuan Li and Chengying Jiang for excellent assis-
tance in formatting this monograph, as well as overseeing many organizational
matters during the conference.

Lastly, we extend a special thanks to the contributing authors of this mono-
graph and hope that it will provide an impetus for the next joint effort to evaluate
the environmental importance of microorganisms.

Shuang-Jiang Liu and Harold L. Drake
Beijing and Bayreuth, March 2008
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CHAPTER 1
CURRENT AND FUTURE PERSPECTIVES ON THE
ENVIRONMENTAL IMPORTANCE OF
MICROORGANISMS

Harold L. Drake' and Shuang-Jiang Liu?

1 Department of Ecological Microbiology, University of Bayreuth, 95440 Bayreuth, Germany,
2 and Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

INTRODUCTION

In contrast to plants and animals that paint our landscapes and oceans with fascinating
shapes and vivid colors, most microorganisms, especially prokaryotic microorganisms,
are not easily seen. Thus, it is primarily the effect that the microbe has on its habitat,
rather than the visual image of the microbe itself, that makes its presence known to hu-
mans. Indeed, the impact of microbes on human health and the spoilage and production
of foods are primary reasons why microbiology became a scientific discipline (Brock,
1961). Thus, many of the primary roots of microbiology are hinged to human health and
diet, as is exemplified by the emergence of so-called ‘probiotics’ as dietary supplements,
and a societal awareness of the impact of microbes on the environment has lagged be-
hind the more practical appreciation of what microbes are relative to the human experi-
ence. Nonetheless, Winogradsky (1890), Beijernick (1908), Kluyver (1924), and other
early microbiologists understood that the metabolic diversity of microorganisms was
important to biological cycling of the elements. It is now clear that microbes have
enormous impact on the global flux of elements, as is illustrated by the fact that, at the
global level, the amount of carbon and nitrogen stored in microbial biomass is 1- and
10-fold that of plants, respectively (Whitman et al., 1998).

It is within this context, i.e., the context of the importance of the microbe in the en-
vironment, that a group of scientists from China and Europe met in September 2007 to
evaluate many of the key issues facing not only microbiologists as scientists, but also
society relative to how microbes shape the planet. The purpose of this introductory
chapter is to highlight both current and future perspectives on the environmental impor-
tance of microorganisms that were evaluated during this meeting. Subsequent chapters
provide detailed statements on both basic and applied problems that were identified dur-
ing the course of this meeting.

MICROBIAL CYCLING OF ELEMENTS IN DIVERSE HABITATS

Intercycle coupling Microbe-catalyzed redox reactions fuse the biological cycles.
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Thus, one of the main impacts that microbes have in the environment is ‘intercycle cou-
pling’ (Drake and Kiisel, 2005; Drake et al., 2008). For example, sulfate reducers fuse
the sulfur and carbon cycles during the concomitant dissimilation of oxidized sulfur and
the oxidation of reduced (i.e., organic) carbon, and denitrifiers fuse the nitrogen and
carbon cycles during the concomitant dissimilation of nitrate and the oxidation of re-
duced (i.e., organic) carbon. At the cellular level, the conservation of energy is the main
incentive for the microbe to form links between diverse half-cell reactions that, collec-
tively, constitute biological cycles. But at the ecosystem level, these redox links manifest
themselves in ways that have profound impact on global cycling of elements (e.g., C, N,
and S). Indeed, it is textbook knowledge that many of the reactions of the biological cy-
cles are catalyzed exclusively by microbes (e.g., Madigan and Martinko, 2006), which
obviously make microorganisms indispensable to these cycles as we know them. It is
likewise textbook knowledge that the large number of unique microbial links in the bio-
logical cycles is coincident to and dependent on microbial biodiversity.

Biodiversity Twenty years ago, the term ‘biodiversity’ was not an entry in the Third
College Edition of the Webster’s New World Dictionary. Although the term is now in
widespread use, the general populace might think of ‘biodiversity’ as the abundance of
different plants and animals within a particular region. Such thinking of course over-
looks the unseen microbe, but more importantly fails to take into consideration that bio-
diversity has two components, one being organismal and the other being functional.
Thus, the enormous phylogenetic diversity of microorganisms that has become a hall-
mark of microbial ecology in recent years masks an enormous physiological diversity
that constitutes the primary basis for the in situ functional links of microbes and, thus,
their environmental importance. Numerous studies have shown that nature harbors an
enormous number of undiscovered microbes due to the evolutionary driving forces that
have yielded these complementary (i.e., phylogenetic and functional) diversities. For
example, the major fraction of the estimated 10° distinct prokaryotic genomes (i.e., spe-
cies) in soil is unresolved (Curtis et al., 2002; Gans et al., 2005).

Molecular microbial ecology The application of molecular approaches has un-
questionably become the modern ‘high card’ of microbial ecology. Indeed, progress in
the field of molecular microbial ecology has issued in a new era of not only how mi-
crobes can be analyzed but also how we think of microbes relative to their phylogenetic
diversity and in situ realities. It is nonetheless worth noting That both classic and im-
proved cultivation approaches can also detect a broad diversity of taxa that may have
once been considered ‘unculturable’ and also provide direct information as to their func-
tion and regulation (e.g., Jansen et al., 2002; Joseph et al., 2003; Stevenson et al., 2004
Jansen, 2006; Heylen et al., 2006). Indeed, in certain cases, the detection of in situ rele-
vant functional groups by cultivation-based methods might be superior to molecular ones
(e.g., Ellis et al., 2003; Macur et al., 2007). Nonetheless, all methods have limits.

Thus, there is a growing awareness that a combination of both classical and molecu-
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lar approaches is needed in ‘modern’ microbial ecology. For example, cataloging mo-
lecular sequences is important for resolving certain types of phylogenic-based questions
but may not replace the type of information obtained from cultured organisms relative to
their ecophysiological behavior and how this behavior impacts on ecosystem function.
Indeed, 16S rRNA-based phylogenetic analyses have serious shortcomings relative to
establishing functional links to many microbial taxa (e.g., Becker et al., 2000; Jansen,
2006; von Wintzingerode et al., 1997; Phillipot, 2002; Hallin et al., 2006; Drake et al.,
2006).

Postulates of the past: do we need them? As noted by Hungate in the early
1960’s (Hungate, 1962), one of the main goals in the field of microbial ecology is to
determine what impact a particular microbe has on the system it inhabitats, i.e., to re-
solve cause-and-effect relationships of environmentally important microorganisms.
Principles for establishing a cause-and-effect relationship between a microorganism and
a disease (i.e., its in situ activity) were documented by Koch in the 1880°s (Koch, 1882,
1884), and several postulates attributed to Koch can be used to prove that a specific mi-
crobe causes a specific disease. Disease is merely one of the many symbioses of mi-
crobes, and it is therefore possible to slightly modify Koch’s postulates for evaluating
the ecological activity (i.e., effect or impact) of a microbe:

(1) A specific microbe must be associated with an in situ activity of a specific habitat.

(2) This microbe must be isolated in pure form from this habitat.

(3) This microbe must produce the same activity observed in the habitat when cha-
llenged under experimental conditions (e.g., in a microcosm or bioreactor) that
simulate those of the habitat from which it was isolated.

(4) This microbe must be re-isolated from the experiment (e.g., from the microcosm
or bioreactor) conducted in Postulate 3.

The current awareness of the so-called ‘uncultured majority’ greatly complicates the
implementation of these postulates, i.e., the inability to culture a microbe and the diffi-
culty in accurately simulating in situ conditions in the laboratory obviously limit the
utility of these postulates. The large number phylotypes likewise augment the difficulties
one faces with complex communities such as soil microbial biomes. Although these
postulates might be considered a ‘classic wish list’ relative to proving cause-and-effect
relationships of microbes in their given habitats, the difficulties noted above clearly
point to the need to employ non-classic (i.e., molecular) methods and to modify these
postulates accordingly when the question posed so necessitates.

Many chapters in this monograph evaluate environmental aspects of functional
groups of microorganisms and confront key issues relative to resolving their in situ
activities. As outlined in the chapters, and depending of the problem under study, these
issues can be addressed by both cultivation-dependent and cultivation-independent ap-
proaches, each of which presents its own unique strengths and weaknesses relative to
fulfilling the postulates above. One of the future challenges facing microbiologists is to
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work objectively within the constraints of methods that are over shadowed by
well-established postulates and principals of the past.

BIOREMEDIATION AND BIOAUGMENTATION: HARNESSING M-
CROBES

Microorganisms: the catalyst on center stage Microorganisms are the main
catalysts in many bioremediation and bioaugmentation processes. Microbiologists often
claim that the efficient exploitation of microorganisms needs a clear understanding and
complete description of the microbes. This claim is certainly true for many current in-
dustrial bioprocesses, such as the fermentative productions of antibiotics and amino ac-
ids. These commercial processes exploit pure microbial cultures, such as Streptomyces
coelicolor or Corynebacterium glutamicum. However, is this claim also true for biore-
mediation and bioaugmentation technologies, particularly those in the early days of ex-
ploiting microorganisms before their existence was scientifically established? The Chi-
nese invented the use of spoiled water for the recovery of copper from ores as early as
1094, which could be considering the beginning of bioleaching (Zhong, 1980). Thus,
bioleaching was established prior to a scientific understanding of bioleaching microbes
such as Thiobacillus ferrioxidans (Temple and Colmer, 1951) [currently Acidithiobacil-
lus ferrioxidans (Kelly and Wood, 2000)]. The Imhoff (also called Emscher-Brunnen)
tank, which separates and digests organic particles in sewage, was invented prior to un-
derstanding that anaerobic digestion is driven by anaerobic bacteria (Winter, 1999).
That the majority of microbes in activated sludge are still uncharacterized (Amann et al.,
1995) has not prevented the operation of countless wastewater treatment plants. Thus, a
sophisticated understanding of microorganisms might appear to not be prerequisite to
harnessing them for bioremediation and bioaugmentation. But, is this conclusion fully
correct?

Although wastewater treatment plants might operate relatively effectively, their effi-
ciency and stability are adversely affected when activated sludge increases abnormally.
This phenomenon is called sludge bulking and is attributed to an abnormal growth of
filamentous microbes in activated sludge (Schuler and Jassby, 2007). Microbiologists
and municipal engineers are still looking for ways to hinder the growth of filamentous
microbes in activated sludge. A fundamental question that needs to be answered is: If the
instability of the overall biological process is caused by microbes at a specific position
of the process, what in situ factors and what aspects of the problematic microbes govern
this instability? Such fundamental questions make it clear that more studies are needed
to understand (a) the microbial composition of activated sludge and (b) the functionality
of specific microbes involved in the removal of pollutants in wastewater.

An understanding of the microbes involved in bioremediation and bioaugmentation
is not only important for improving current environmental biotechnologies, but also vital
for developing novel future biotechnologies. For example, the discovery of anaerobic
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ammonium oxidizers led to the application of a novel process (i.e., Anammox) for the
removal of nitrogen in wastewater (Jetten et al., 2005). It is textbook knowledge that
microbes are major drivers of the geobiochemical cycles on earth. It can be assumed that
bioremediation or bioaugmentation processes are anthropogenic-induced augmentations
of microbial reactions/metabolisms. It thus seems obvious that understanding the fun-
damentals of naturally-occurring microbial processes is vital for the efficient augmenta-
tion of microbes in novel environmental technologies.

Microbial conversion of metals Many microbes can oxidize and reduce metals.
This capacity (a) has been exploited in the biomining and bioleaching (i.e., for the re-
covery) of valuable metals (such as copper and gold) from low-grade ores (Rawlings and
Johnson, 2007) and (b) is important for the bioremediation of acid mine drain-
age-impacted environments (Saria et al., 2006). In natural environments such as geo-
thermal regions and in lake sediments, reduced sulfur (e.g., sulfide) often coexists with
metals and can be simultaneously oxidized by different members of the microbial com-
munity, including iron- and sulfur-oxidizers. The microbial oxidation of iron and sulfur
is a major driver of elemental geocycles in geothermal regions and in lake sediments
(Inskeep et al., 2004; Macur et al., 2004; Kozubal et al., 2007; Kiisel et al., 2002; Blsthe
et al., 2008).

Sulfate is the most oxidized sulfur compound, and sulfate-reducing bacteria have
been long recognized as an important group of anaerobes that reduce sulfate to sulfide as
a terminal electron-accepting process (Postgate, 1978; Thauer et al., 2007). Sulfate re-
ducers are notorious for producing unpleasant odors and are primary contributors to the
biological corrosion of steel (Postgate, 1978; Zuo, 2007). In contrast to such annoyances,
sulfate reducers can also be exploited for the biological treatment of, and metal recovery
from, wastewater that contains high concentrations of sulfate and metal ions (e.g., Lens
et al., 2007; Liamleam and Annachhatre, 2007).

Microbial conversions of aromatic compounds and persistent organic
pollutants (POPs) Although the scope of environmental microbiology has become
very broad, one of its most important aspects is rooted to the environmental fate of
pollutants. Investigations on the environmental fate of BTX (benzene, toluene, and
xylene) and other aromatic compounds have yielded a basic understanding of how
industrial and agricultural pollutants are degraded by microbial communities (Golovleva
et al., 1992; Chaudhry and Chapalamadugu, 1991; Osborne et al., 1988; Johnson and
Spain, 2003). Although recently synthesized chlorinated nitroaromatic compounds (e.g.,
chloronitrobenzenes) are likely to be resistant to microbial attack, progress on how
microbes might be utilized to degrade .such compounds from impacted sites is being
made (Wu et al., 2006; Liu et al., 2007). The discovery of many novel biocatalysts and
biochemical reactions during research on the microbial degradation of aromatic
compounds has been a new impetus in the field of microbial physiology. Genomics and
metagenomics provide new strategies to acquire information of relevance in
environmental microbiology: instead of first identifying microbial phenotypes pertinent



