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PREFACE

This book is intended primarily for component design and selection courses in the
design sequence of mechanical engineering curricula. While the principal objective
has been a text that is easy to read for students, the depth of the topic coverage makes
the book a useful professional reference.

Much of the challenge and opportunity in mechanical engineering consists of
devising load-bearing elements which combine superior function with minimum cost.
Such design requires mastery of both engineering fundamentals and practical opti-
mization techniques. Thus the text aims at giving the reader useful training and insight
in optimal design within the context of the design of basic mechanical components.

The book begins with a review of fundamentals. Students are usually astonished
to find that they will be expected, as engineers, to define the problem which they will
laker solve. Thus the first chapter deals with the process of creating designs to answer
particular needs. Uncertainty being a fact of engineering life, probability theory is
presented in the next chapter. Tolerancing and computer-aided design and manufac-
ture are discussed. A review of the principles of static equilibrium is followed by a
detailed presentation of the Mohr’s-circle method of analyzing commonly encoun-
tered stress situations. A discussion of factors of safety includes factors based on
statistics. Materials testing is discussed to give the student an understanding of the
meaning of published material properties. Next is an examination of current theories
of failure for metals under static loads, including linear elastic fracture mechanics.
Methods for designing against fatigue failure include the state-of-the-art local-strain
model. The background material concludes with a chapter on practical optimization
techniques.

The remainder of the text examines the design of various types of mechanical
elements, with necessary theory reviewed in the context of the problem. Optimal
proportions are chosen for tension members with the aid of the computer. Column
theory, including the powerful energy method, is used to design members loaded in
compression. The chapter on torsion includes calculation of the stiffness of members
of nonsymmetric cross sections. A beam acting as a vibration isolator is examined, and
proportions are chosen for best performance. Several practical methods of obtaining
beam-deflections and their resonant vibration frequency are presented. Practical ways

xiit



XiV  PREFACE

to handle triaxial stress situations are discussed. An up-to-date review of bolted joints
accompanies the principles of design of such elements. Similarly, review of tHeory is
combined with design technique and component selection for composite materials,
helical springs, weldments, rolling bearings, and drive belts.

The authors will be grateful for comments and suggestions.
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THE INTERNATIONAL SYSTEM
. OF UNITS, SI

" (SYSTEME INTERNATIONAL
I’UNITES)

Humans understandably turned first to parts of the body and their natural surround-
ings for measuring instruments. Early Babylonian and Egyptian records and the Bible
indicate that length was first measured with the forearm, hand, or finger and that time
was measured by the periods of the sun, moon, and other heavenly bodies. When it
was necessary to compare the capacities of containers such as gourds or clay or metal
vessels, they were filled with plant seeds which were then counted to measure the
volumes. When means for weighing were invented, seeds and stones served as stan-
dards. For instance, the “carat,” still used as a unit for gems, was derived from the
carob seed. .

As societies evolved, weights and measures became more complex. The inven-
tion of numbering systems and the science of mathematics made it possible to create
whole systems of weights and measures suited to trade and commerce, land division.
taxation, or scientific research. For tl.ese more sophisticated uses, it was necessary
not only to weigh and measure more complex things, but also to do it accurately
time after time and in different places. How cver, with limited international exchange
of goods and communication of ideas, it is not surprising that different systems for
the same purpose developed and became established in different parts of the world—
even in different parts of a single continent.

The English System (U.S. Conventional System, USCS)

The measurement system commonly used in the United States today is nearly the
same as that brought by the colonists from England. These measures had their origins
in a variety of cultures—Babylonian, Egyptian, Roman, Anglo-Saxon, and Norman
French. The ancient “digit,” “palm,” “span,” and “cubit” units evolved into the “inch,”
“foot,” and “yard” through a complicated transformation not yet fully understood.

Much of this material is excerpted from publications of the Office of Metric Programs. U.S. Department
of Commerce.

XY
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Roman contributions include the use of the number 12 as a base (12 inches to
the foot) and words from which we derive many of our present weights and measures
names. For example, the 12 divisions of the Roman pes, or foot, were called unciae.
Our words inch and ounce are both derived from that Latin word.

The “yard” as a measure of length can be traced back to the early Saxon kings.
They wore a sash or girdle around the waist—which could be removed and used as
a convenient measuring device. Thus the word yard comes from the Saxon word gird
meaning the circumference of a person’s waist.

Standardization of the various units and their combinations into a loosely
related system of weights and measures sometimes occurred in fascinating ways.
Tradition holds that King Henry I decreed that the yard should be the distance from
the tip of his nose to the end of his thumb. The length of a furlong (or furrow-long)
was established by early Tudor rulers as 220 yd. This led Queen Elizabeth I to declare,
in the sixteenth century, that henceforth the traditional Roman mile of 5000 ft would
be replaced by one of 5280 ft, making the mile exactly 8 furlongs and providing a
convenient relationship between two previously ill-related measures.

Thus, through royal edicts, England by the eighteenth century had achieved a
greater degree of standardization than the continental countries. The English units
were well suited to commerce and trade because they had been developed and refined
to meet commercial needs. Through colonization and dominance ~f world commerce
during the seventeenth, eighteenth, and nineteenth centuries, the English system of
weights and measures was spread to and established in many places, including the
American colonies.

However, standards still differed to an extent undesirable for commerce among
the 13 colonies. The need for greater uniformity led to clauses in the Articles of Con-
federation (ratified by the original colonies in 1781) and the Constitution of the United
States (ratified in 1790) giving power to the Congress to fix uniform standards for
weights and measures. Today, standards supplied to all the states by the National
Bureau of Standards ensure uniformity throughout the country.

The Metric System

The need for a single worldwide coordinated measurement system was recognized
over 300 years ago. Gabriel Mouton, Vicar of St. Paul in Lyons, proposed in 1670 a
comprehensive decimal measurement system based on the length of 1 minute of arc
of a great circle of the earth. In 1671 Jean Picard, a French astronomer, proposed the
length of a pendulum beating seconds as the unit of length. Other proposals were
made, but over a century elapsed before any action was taken.

" In 1790, in the midst of the French Revolution, the National Assembly of France
requested the French Academy of Sciences to “deduce an invariable standard for
all the measures and all the weights.” The Commission appointed by the Academy
created a system that was, at once, simple and scientific. The unit of length was to
be a portion of the earth’s circumference. Measures for volume and mass were to be
derived from the unit of length, thus relating the basic units of the system to each
other and to nature. Furthermore, the larger and smaller versions of each unit were
to be created by multiplying or dividing the basic units by 10 and its powers. This
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feature provided a great convenience to users of the system, by eliminating the need
for such calculations as dividing by 16 (to convert ounces to pounds) or by 12 (to
convert inches to feet). Similar calculations in the metric system could be performed
simply by shifting the decimal point. Thus the metric system is a base-10 or decimal
system.

The Commission assigned the name metre (which we spell meter) to the unit of
length. This name was derived from the Greek word metron, meaning “a mcasure.”
The physical standard representing the meter was to be constructed so that it would
equal one ten-millionth of the distance from the north pole to the equator along the
meridian of the earth running near Dunkirk in France and Barcelona in Spain.

The metric unit of mass, called the gram, was defined as the mass of one cubic
ceriimeter of water at its temperature of maximum density. The cubic decimeter (a
cube one-tenth of a meter on each side) was chosen as the unit of fluid capacity. This
measure was given the name liter.

Although the metric system was not accepted with enthusiasm at first, adoption
by other nations occurred steadily after France made its use compulsory in 1840. The
standardized character and decimal features of the metric system made it well suited
to scientific and engineering work. Consequently, it is not surprising that the rapid
spread of the system coincided with an age of rapid technological development. In
the United States, by an act of Congress in 1866, it was made “lawful throughout the
United States of America to employ the weights and measures of the metric system in
all contracts, dealings or court proceedings.” Since 1893, the internationally agreed-to
metric standards have served as the fundamental weights and measures of the United
States.

Sk The International System of Units

International cooperation aimed at standardization of length and mass units was the
purpose of the Metric Convention, a treaty signed in 1875 by 17 countries, including
the United States. Established with this agreement were the General Conference of
Weights and Measures, to meet every six years; the International Bureau of Weights
and Measures (located near Paris), and other machinery to implement the decisions
of the General Conference.

In 1960, the General Conference adopted an extensive revision and simplifica-
tion of the system. The name Systéme International d’Unités (International System
of Units), with the abbreviation SI, was adopted for this modernized metric system.

The U.S. Congress passed the Metric Conversion Act in 1975, which declared
it to be national policy to coordinate and plan the increasing use of the metric system
within the United States. The Department of Commerce’s Office of Metric Programs
‘has the role of aiding in this conversion. That name implies a certain confusion of
terms, for the scientific and engineering communities seek the adoption not of the
metric system, but of SI. Of course, the name was chosen for its familiarity.

Current Status

As of this writing, only Burma and the United States are not “metric,” or “SL.” But
even some traditionally metric nations have not totally adopted SL
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In the United States, the automobile industry has been a leader; more than 90
percent of car components are now specified in SI. Heavy equipment and computer
manufacturers substantially use SI. Much of the packaging industry, and film, tires,
cigarettes, liquor, pharmaceuticals, wine, and soft drink, use SI. In some states gasoline
is dispensed by the liter. International sports use SI units exclusively (track and field
events, swimming, etc.).

SI in Machine Design

Those units of SI commonly used in machine design are described below. There are
numerous others, naturally, applicable to other fields.
The SI base units are the following:

1. Length: the meter (m), which was originally (1793) defined as a certain fraction of
the earth’s circumference, then later as the distance between two marks on a bar
kept at the French Bureau of Standards. It was redefined recently by the Geneva
Conference in terms of the distance traveled in vacuum by a certain wavelength
of light.

2. Mass: the kilogram (kg), equal to the mass of the standard kilogram kept at the
International Bureau of Weights and Measures.

3. Time: the second (s), defined in terms of the period of a certain radiation of cesium
133.

Other base units not necessary for this text are those for electric current, tem-
perature, luminous intensity, and substance.

Units for developed quantities are derived from the base units. Four of these
bear special names and are of importance in this text.

1. Force: the newton (N), the force which will impart to a 1-kg mass an acceleration
of 1 m/s2. (The pull of gravity, i.e., the weight, of a large apple is roughly a newton.)

2, Energy: the joule (J), or a newton-meter (N-m).

3. Power: the watt (W), or a joule per second (J/s).

4. Pressure or stress: the pascal (Pa), or a newton per square meter (N/m?). Engineer-
ing stresses usually run in millions of pascals, hence the megapascal (MPa) is most
commonly seen.

Note that weight has become an obsolete term in this system. One can speak
of a kilogram of butter, but the reference is to a mass, not the force exerted on it by
gravity, which would be expressed in newtons.

Numerous other units without a name are also derived, e.g., those for velocity,
acceleration, torque, density. .

It has been recognized that some units in very common use will persist. For
example,

Units of time: minute, hour, etc.
Angular measure in degrees
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Liquid volume in liters (1000 cm3 or 1073 m3)

Tonne (1000 kg = 2200 English pounds, commonly called a metr-ic ton or a
long ton)

Large and small quantities are designated by prefixes already in common use:

Size Prefix Symbol

10? giga G
108 mega M
10? kilo k
1072 centi c
1073 milli m
10°¢  micro u

(There are others inapplicable in this text.)

The English use of the decimal period is to continue, for example, 1.93, 0.35.
Where a number of digits precede or follow the decimal point, they are to be written
in groups of three, without commas, such as 2013 567.2 or 0.005 6. The computer
practice of showing multiples of 10 by E (1.03E — 02 = 0.0103) will be common (used
in this text). Useful conversion factors are printed on the inside cover of this book.
Here are some numbers which you will find useful to commit to memory:

254 x in = mm

2.2 x kg = lbm
445 x Ibf =N
6900 x psi = Pa

Various journals now require submission of articles in SI. The American Society
of Mechanical Engineers foresees a period of some years with the USCS and SI
systems both in common use, and it is in line with that view that the examples and
problems of this text are divided between the two. There is also the question of getting
people used to what sounds right in the new scheme. If a stress of several million
pounds per square inch turns up in a problem solution, one suspects an error. What
about several hundred megapascais?
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