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Preface

The following central changes have been made moving
from the tenth to the eleventh edition:

1. A large number of problems have been added;
specifically, 59 new problems have been added
to the original problem sets of Chapters 2
through 5, an increase of 28%.

2. Chapter 6 has been added, covering the applica-
tion of Lagrange’s equations for deriving equa-
tions of motion. For one-degree-of-freedom
(IDOF) problems, the tenth edition consistently
provided a dual view of developing the equa-
tion of motion (EOM) using either Newtonian
dynamics or work—energy. Hence, transitioning
from the work-energy approach in Chapters 3
and 5 for 1DOF problems to multidegree-of-
freedom (MDOF) problems in Chapter 6 via
Lagrange’s equations is straightforward. Thirty-
eight new problems are provided in Chapter 6.

Dynamics concerns the motion of particles and rigid
bodies and, as traditionally presented, has proven to
be a “killer” course for both students who study engi-
neering and professors who try to teach it. Students
generally fail to grasp the pervasive nature of dynam-
ics in engineering practice and view the subject matter
as a collection of “tricks,” rather than a unified body
of knowledge based on an extremely limited number
of basic principles. Professors grow tired of teaching
courses that have a high level of failure and attrition,
and professors in successor courses tend to complain
that students “don’t know how to derive equations of
motion or do free-body diagrams.”

This book’s premise is that many of these difficulties
arise because of the inappropriate nature of currently
available dynamics texts. These books have a peculiar
disconnect from either the requirements of subsequent
course work or the practice of dynamics in an engineer-
ing career. The practice of engineering involves the
development of (1) general kinematic equations, that is,
equations that tell us the position, velocity, and accel-
eration of particles and/or rigid bodies without regard
to the forces acting on the bodies, and (2) general EOMs
that tell us how the motion of particles and rigid bodies
evolves as a function of time under the action of forces.
Dynamics describes the continuous evolution of motion.
It is not a series of “snapshots” at a few discrete times;
yet many current textbooks treat it as such.

The natural language of dynamics is differential
equations, and most of today’s dynamics students have

either studied differential equations or are concurrently
enrolled. Nonetheless, many dynamics books carry on
an extended conspiracy to avoid differential equations.
Given that most current texts regularly use algebraic
equations, for example, f = ma and T = Iw, rather than

the differential equation statements ¥ f =m#and T = [ 0,
students regularly have trouble with follow-on courses
that require the development and solution of governing
differential EOM.

An additional shortcoming of most current texts
is the treatment of computer skills. Most engineer-
ing freshmen have an introduction to at least one pro-
gramming language and then frequently suffer at least
1 year of neglect before starting over with a computer-
based numerical methods course. To be direct, modern
dynamics cannot be fully appreciated without recourse
to computer solutions. This book provides enough com-
puter example problems and tools for students to grasp
the subject.

In the past, many engineering curricula covered
dynamics twice. The “survivors” of the algebra-based
first course proceeded to a differential-equation-based
second course. The essential modeling skills, involving
the development of general kinematics equations and
general EOMs, were covered in the second course. The
continuing contraction of engineering curricula is forc-
ing an end to this practice. Many curricula developers
are also struggling to find space for coverage of tradi-
tional vibration topics. Engineering educators should
now be prepared to consider the real requirements of
dynamics in both curricula and engineering practice
and develop courses that meet these requirements. The
contents of this book were developed to teach students
how to model general dynamic systems. The writer’s
experience has been that most students have an easier
time learning general skills, where effectiveness can be
demonstrated for a wide range of problems, than a col-
lection of problem-specific tasks.

Many current dynamics books have potentially
superb problems; however, the wrong questions are
being asked. In my experience, companies hiring engi-
neers will never ask them to work the problems in these
books or even apply the tricks the students are taught to
solve these problems. Engineers are employed to derive
general kinematics equations and EOMs. These general
equations can be used to solve for maximum accel-
erations, loads, velocities, etc., and answer real engi-
neering design problems. Evidence that our students
understand this situation is provided by the massive
resale of such books on the secondhand book market.
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Students regularly keep books on thermodynamics,
fluid mechanics, strength of materials, controls, etc., but
rush to dispose of their undergraduate dynamics texts.

Dynamics books that are written with a conscious
avoidance of differential equations tend to either omit
elements of mechanical vibrations or provide a separate
(late) chapter covering the topic. Given the differential-
equation orientation of this book, elements of mechanical
vibrations are integrated, from the outset, in the particle
and planar-dynamics material. “Real-world” systems
of particles and rigid bodies inevitably include springs
and energy-dissipation mechanisms, including viscous,
Coulomb, and aerodynamic damping. One- and two-
degree-of-freedom (2DOF) problems are introduced in
the application of particle and planar rigid-body kinetics.
Damped and undamped natural frequencies and linear
damping factors are introduced and defined for 1DOF
problems. 2DOF problems are used to define system nat-
ural frequencies (eigenvalues) and mode shapes (eigen-
vectors) and to demonstrate modal uncoupling of MDOF
vibration problems. The 2DOF material can be skipped
without affecting the readability and utility.

The idea of an equilibrium position or positions
defined by a differential EOM is introduced, leading
to linearization of nonlinear EOM for small motion
about an equilibrium position. Nonlinear terms are
linearized by using Taylor-series expansions about an
equilibrium position. Stable and unstable static equi-
librium positions are demonstrated.

In considering his campaign, President George HW.
Bush referred to “The Vision Thing” (Wikipedia). In
fact, vision is the missing element in current dynamics
books and courses. The “vision” of dynamics presented
in this book is active students actively developing general
kinematic equations and EOMs, actively analyzing the
systems to the extent possible, and then actively setting
up and solving these equations via current computer
techniques.

This book combines subjects that would normally be
covered in both an introductory and an intermediate or
advanced dynamics course. It is intended to be of value
to students through their first course and subsequently
in engineering practice, and was also written for working
engineers who are trying to analyze real dynamic systems.

Book Outline

The outline followed in achieving the book’s vision
is traditional. Chapter 1 covers some fundamental
requirements of dynamics, including units, force, and
mass, and provides a brief history of the development

Preface

of dynamics. This material is intended to be a quick
review of material covered earlier in physics.

Chapter 2 covers kinematics of a particle, including
displacement, velocity, and acceleration in one and two
dimensions. Cartesian, polar, and path coordinates
are introduced, and coordinate transformations of the
components of a vector in a plane are emphasized.
Alternative kinematic statements of the same example
using Cartesian, polar, and path coordinates are empha-
sized, using the coordinate transformations to move
between the coordinate representations.

Chapter 3 deals with the kinetics of a particle. It
begins with Newton’s laws for rectilinear motion. The
rectilinear examples introduce physical modeling, cov-
ering forces due to gravity and spring forces, as well as
linear, quadratic, and Coulomb damping. 1DOF vibra-
tion problems are covered, introducing the concepts of
damped and undamped natural frequencies, damping
factors, resonance, etc. Solutions are developed for free
and forced motion and steady-state response due to har-
monic excitation. The examples emphasize the develop-
ment of the EOM from X f=m# and the solution of
the equation via either (1) direct time integration or (2)
the energy-integral substitution, ¥ = d(¥*/2)/dx. Next, the
notion of degrees of freedom and kinematic equations
of constraint are introduced, using masses connected
by pulleys as examples. These examples include several
1DOF vibration problems.

Planar motion in two dimensions is introduced next,
with applications involving Cartesian, polar, and path
coordinates. The Cartesian examples include trajectory
motion with and without quadratic drag and motion
on a plane, including Coulomb friction forces. Polar
coordinate applications include the simple pendulum,
and this example is used as the initial demonstration
of linearization of an EOM. EOMs are developed for
the pendulum, including viscous and quadratic damp-
ing. The path-coordinate applications tend to be tradi-
tional with beads sliding on wires or along a specified
surface.

The fact that dynamics problems regularly have
MDOF is obscured by many introductory dynamics
texts that only present IDOF examples. 2DOF problems
are introduced in Section 3.5 with simple spring—mass
systems. An approach is presented for developing EOMs
for masses connected by linear springs and dampers.
Matrix statements are presented for linear 2DOF vibra-
tion problems with coordinate coupling provided by the
stiffness and damping matrices. A double pendulum is
introduced and analyzed as a second 2DOF example.
Nonlinear EOMs are developed for the two particles in
the double pendulum from ¥ f=m#. These equations
are subsequently linearized to yield a matrix model
with coordinate coupling in the inertia matrix entries.
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Analysis procedures for 2DOF vibration problems are
introduced by analyzing the free motion of a spring-
mass system, leading to a quadratic characteristic equa-
tion to define the eigenvalues and natural frequencies.
Solutions for the eigenvectors from calculated eigen-
values are presented next. Uncoupling of the coupled
matrix vibration equations via the matrix of eigenvec-
tors, leading to uncoupled modal differential equations,
is also explained. Solutions are presented for free and
forced motion, proceeding from solutions of the modal
differential equations. Forced motion resulting from
harmonic excitation is also presented. 2DOF vibration
problems are provided to show students that such prob-
lems exist, and methods to derive and analyze the EOMs
that model the systems are presented. This is done to
help students understand how these systems behave,
with multiple natural frequencies and resonance pos-
sibilities. The vibration coverage in Chapter 3 is a rea-
sonable introduction to aspects of vibration but is not a
substitute for a good engineering-vibrations text.

Work-energy applications for 1DOF examples are
covered in Section 3.6. Kinetic and potential energies
are introduced, and the general work-energy expres-
sion, Work, . =A(T + V), is developed. Work due to
potential forces is not covered. Such forces are mod-
eled by potential energy functions from the outset. The
energy-integral substitution, d(x*/2)dx = ¥, is employed
to show the direct relation between the work-energy
equation and the original X f=m¥ differential EOM.
A considerable amount of material is presented on the
derivation of EOM for 1DOF examples starting from
the work-energy equation.

Chapter 3 concludes with the coverage of linear
momentum and moment-of-momentum topics. These are
largely algebraic in nature and are customarily covered
adequately by prior physics courses. The coefficient of res-
titution for particle collisions is covered in Section 3.7.2.

Chapter 4 covers planar kinematics of rigid bodies.
Many engineering dynamics problems involve planar
dynamics, that is, motion of rigid bodies in a plane (such
as the plane of this page) versus 3D vector kinematics
that would be required to keep track of the position and
orientation of an airplane or satellite. The kinematic
relationships of Chapter 2 are adequate for the tasks
presented in this chapter. The traditional approach for
teaching the analysis of planar mechanisms involves
vector velocity and acceleration equations for Cartesian
motion that require a great deal of vector algebra with
cross products. This traditional approach is presented
in Chapter 4; however, an alternate approach using
geometry is also presented for finding relationships
between variables. (My students have found the geomet-
ric approach to be much easier and are able to develop
general kinematic equations for mechanisms quickly.)

xvii

A considerable effort is expended at the start of this
chapter to cover the rolling-without-slipping kinematic
condition, given that students traditionally have trouble
grasping this concept. Multiple representative examples
including several commonly occurring mechanisms
are analyzed using both traditional and geometric
approaches.

Chapter 5 covers planar kinetics of rigid bodies,
starting with inertia properties and including the
mass moment of inertia, the radius of gyration, and
the parallel-axis formula. For planar motion of a rigid
body, governing force and moment equations are devel-
oped in Section 5.3, and the kinetic energy definition is
developed in Section 54. In Chapter 3, Newtonian and
energy approaches are considered sequentially. In this
chapter, students are assumed to have experience and
confidence in developing the EOM for 1DOF examples
using either Newtonian (free-body) approaches or the
energy. Hence, for most 1DOF planar-kinetics examples,
the EOM is derived using both approaches.

Fixed-axis-rotation examples provide the initial applica-
tion of the governing equations. In Section 5.6, EOMs are
developed for various compound-pendulum geometries.
EOMs are developed, pivot reactions are defined in terms
of the pendulum’s rotation angle, and stability is exam-
ined for small motion about equilibrium positions. Linear
damping is also considered. A bar supported by linear
spring and damper supports is investigated, with consid-
erations of motion about equilibrium. The base acceleration
of a compound pendulum’s pivot-point is also investigated.

Systems in general planar motion that require both force
and moment equations are introduced in Section 5.7.1,
including rolling-without-slipping examples. Various
IDOF examples are modeled in Section 5.7.2. In
Section 5.7.3, EOM developments are carried out using
Newtonian and energy approaches for one-body exam-
ples that include external forces. Generalized forces are
introduced and defined for the energy approach. In
Section 5.7.3, multibody, 1DOF examples are introduced,
demonstrating the advantages of the energy approach
in deriving the EOM for this type of problem.

Several MDOF examples are introduced in Section
5.74, including a double compound pendulum. Torsional
vibrations and systems for which beams are used as
springs are also considered. Section 5.7.5 covers mod-
els for various planar mechanisms, including develop-
ing the EOM from Newtonian approaches as well as
the kinematic-constraint equations that were developed
in Chapter 4. Section 5.8 concludes the chapter with the
development and application of moment-of-momentum
equations for the planar motion of a rigid body.

Chapter 6 explains how to develop equations of motion
for dynamics using Lagrange’s equations. Particle and
planar rigid-body examples are considered.
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Following a derivation of Lagrange’s equations from
principles of virtual work in Section 6.2, worked exam-
ples are provided in Section 6.3 for systems involving
generalized coordinates (coordinates for which no kine-
matic constraints exist). The example problems move
steadily forward in explaining how to account for exter-
nal and dissipative forces, using the same procedures
outlined in Chapters 3 and 5, in particular Section 5.7.3,
for IDOF problems.

Examples are examined in Section 6.4 for which either
linear momentum or moment of momentum is con-
served, showing that either circumstance is “flagged”
using Lagrangian dynamics because one or more gen-
eralized coordinates are missing from the Lagrangian
function. The examples also demonstrate that the cir-
cumstance of conservation of momenta can be utilized
to reduce model dimensionality.

The mechanisms covered in Chapter 5 present
immediate examples of dynamic systems involving
nonlinear kinematic constraints. Section 6.5 pres-
ents the modification to Lagrange’s equations via
Lagrange multipliers that are needed to account for
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kinematic constraints. Four example problems are
worked through to demonstrate the approach.

A major advantage of the Lagrangian approach is
that forces of restraint are automatically eliminated
from the equations of motion. Generally speaking, it
is easier to determine missing reaction forces via free-
body diagrams and Newtonian dynamics. However,
examples are presented in Section 6.6 that show how
these reaction forces can be calculated within the
Lagrangian method by introducing dummy coor-
dinates plus kinematic constraints that limit their
behavior.

For MATLAB® and Simulink® product information,
please contact

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA, 01760-2098 USA
Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com
Web: www.mathworks.com



Authors

Dr. Dara Childs is Leland T. Jordan professor of
Mechanical Engineering at Texas A&M University
(TAMU) in College Station, Texas. He has been direc-
tor of the TAMU Turbomachinery Laboratory since
1984. He has received several best-paper awards,
is an American Society of Mechanical Engineers
(ASME) life fellow, and received the ASME Henry R.
Worthington medal for outstanding contributions in
pumping machinery. He is the author of many con-
ference and journal papers plus two prior books,
Turbomachinery Rotordynamics with Case studies (2013),
Minter Spring Publishing, ISBN# 978-0-615-85272-0,
and Turbomachinery Rotordynamics: Phenomena, Modeling,
and Analysis (1993), John Wiley & Sons, Inc. Dr. Childs
has taught graduate and undergraduate courses in
dynamics and vibrations since 1968: Colorado State

University (1968-1971), University of Louisville (1971-
1980), TAMU (1980—present).

Andrew P. Conkey received his PhD from Texas A&M
University (TAMU) in 2007, where his research was in
the application of the fiber Fabry—Perot interferometer
to machinery/vibration measurements. He received
his bachelor’s and master’s degrees from TAMU-
Kingsville. He has over 16 years of teaching experience,
having taught at TAMU-Kingsville, TAMU-College
Station, TAMU-Qatar, and TAMU-Corpus Christi.
Dr. Conkey is coauthor of Is My Machine OK: A Field
Guide to Assessing Process Machinery, Industrial Press,
Inc., South Norwalk, CT, 2011. In addition to teaching,
he has worked for a refinery, a fiber-optic sensor com-
pany, and an engineering consulting firm.






Contents

P B s a5 st v 555 5 e o A i = ke i e A R S R SRS B A AR NSRS XV
AUBNOTS 1.t bbb bbb b1t st Xix
1. Introduction and FUNAamentals.............cooiiiiiiniciiiis e es et s 1
11 INEFOAUCHION 1ot e et s s et m s miae 1
1.2 Short HiStOTY Of DY NMAIMUCS ..ot cecicisaes ettt s bbb s ettt st s s e s et es et etan 1
13 IR crancosaamnasurnraasinssonensastoss sinrssnaonssssusis vwassss iy assas3sSnEsas RS 503 F5NSR SR RS SRS RUS 0535 FE RS R0 s v S s PR oA S i 3
2. Planar Kinematics of Particles.............cooiiiiiiiicc st s st es et ea s sanaes 7
21 IS ORNICEIGNN . ovonccnvanvrssresiarisnsansssassnusmssnssnss es casssaus s ovss 4says a0 455 4650 S35 S5 PR eSS A A o s S R 7
2.2 Motion in @ SETAIGIt LN .....ooee et eh ettt s e nn 7
22,1 Distance Traveled... ..o bbb st 10
2.3 [Particle Motion in a Plane; Cartesian Coordinates ... i issssimisisssisssssssisssemsmissssisossissssssns spsssssarmensen: 10
24  Coordinate Transformations: Relationships between Components of a Vector in Two-Coordinate
SYSEOIIIS ..ot e e et et 12
25 [Particle Motion in a Plane: Polar COOTRINATES ..o smeesmmsssssenssssssmssnesssesssssassssessmmassomsssomaysysssses sasssmsssassess 14
2.6  Particle Motion in a Plane: Normal-Tangential (Path) Coordinates ...........ccoocoiciiiicnininccinscicerece 17
2.7 Moving between Cartesian, Polar- and Path-Coordinate Definitions for Velocity and Acceleration
COMPONEIES ...t s b bbbt bbbt 0n 20
2.71 Example That Is Naturally Analyzed with Cartesian Components ..............cccccvuinvenincniiciininnns 20
2.7.2  Example That Is Naturally Analyzed Using Polar Coordinates.............ccccooooeuiiiinnnncicciiciinnes 23
2.7.3 Example That Is Naturally Analyzed with Path-Coordinate Components...........cccoueccinvicciciiinian 25
2.8 Time-Derivative Relationships in Two-Coordinate Systems...........ccccccviiniinnmes 27
29  Velocity and Acceleration Relationships in Two Cartesian Coordinate Systems.........cccccocvvciciiciinnnee 29
29.1 Comparisons to Polar-Coordinate Definitions. ..o 30
2.9.2 Coordinate System Expressions for Kinematic EQUations ............cccccooiiiiicnincciinicccccce, 31
293 Coordinate System ObSEIVeIS i miiwimsswmissosimmosssssssns issimssmssaivsissssssisssessmsmims 31
2.10 Relative Position, Velocity, and Acceleration Vectors between Two Points in the Same Coordinate
S EROIEE i s s oo s P s e S S S S S e SN ey By ks e 33
201 Summnany AT IiEEUSEION: suunsassssmesnesormsnivesvusucsres s sstsns soesersnss s e 1o osnis s6 10 sssvisnasyiosseimassionss VARG He4583533 36
T D TN oo o s et 4 3 T B A A A S AT S5 D s oA i S0 A5 38
3. Planar Kinetics of PATHCIES ....c.ccuemmummmmmuossnssssm sromsssmersssommsasesnssuissossinmsissssesssammssasnsssosssassssssssssussessesasasonssas ssnsss 45
Bl INECOAUCHON cssismssissssirsumsessmssmosmmsssssaassass sesysn soaas 4w vemmes sHessoam0S 6 T HvHAIT T8 P SF SRS TR S AR RS PSR STaE T s 45
3.2 Differential Equations of Motion for a Particle Moving in a Straight Line: An Introduction
t0 PhySical MOAELING ......coooiieeee et s 47
3.21 Constant Acceleration: Free Fall of a Particle without Drag.........c.cocvcuiicincrncricnsiccinnsissinnns 47
3.2.2 Acceleration as a Function of Displacement: Spring FOrces............cccoccovnivinnninciiiiinnnnnns 49
3.2.2.1 Deriving the Equation of Motion Starting with the Spring Undeflected ......................... 49
3.2.2.2 Deriving the Equation of Motion for Motion about Equilibrium ........ccccoevnnnnininiin 50

3.2.2.3 Developing a Time Solution for the Equation of Motion ...........ccooieriniiiinnniiin. 52
3224 Developing a Solution for ¥ as a FUnetion of ¥ ...cuwssmnomsmemsssmmsmsensssssssmsass O3

3.2.2.5 Negative Sign for the Stiffness Coefficient awssusismmimmsssismsamvassimsmsssmisonsavesising 54
32.3 Energy Dissipation: ViSCOUS DamIPING.......coecvessmsasssmcsrmesorsssasasasessossassssasmsasnsossnssssssssassasassesssessaasinssosss 54
3231 ViSCOUs DAMIPET sissassmismrmmesmmmseriasossmarancussssnens aossvatsnssssessimssrssssessesasssosnissiesudine Siavinsuanss 54
3.2.3.2 Deriving the Equation of Motion for a Mass—Spring-Damper System ............c.ccocccoenua 55

ix



3.3

34

3.5

3.6

3.7

3.8

Contents

3233 Motion about the Equilibriumm POSIHION «umrcseomsessmnisomacissmmensssmsssrssimssessersresssmassones 55
3.2.34 Developing a Time Solution for the Equation of MOtON ..o, 55
3235 Characterizing DEMPINE w.ommmcsommsmssssmssassssressassmsssassammssorssnsssrssinsesssitvessssassss e fes e 60
3.2.3.6 Solution for Y as a Function of Y Including Damping?.......cccccmemmnmmmmmsmms 61
3.23.7 Negative Damping and Dynamic INStability......cosssamsssossinsianiasonsassnssrsnsssasmsasesssasssssposonss 62
3.24 Base Excitation for a Spring—-Mass—Damper System ...........cccceeiiininininnni 62
3.24.1 Deriving the Equation of MOtiON ..........cooiiiiiiiii e 62
3242 Relative Motiondie to Baige EXCHAHOM xumusenimmmvsssoamssmmmarsmmrorssmaaru s 67
3.2.5 Harmonic Excitation for a IDOF, Spring-Mass-Damper System: Solution for Motion
in the Frequency DOmain ... ..o s 67
32501 Bt NGO conswv st e oot s o S s e TSNS 71
3.2.5.2 Steady-State Relative Motion due to Base EXCitation ......c...ceeseniisesnisinininninnisnianinnns 73
3.2.5.3 Rotating-Imbalance EXCItation ..o 74
32.54 Bummary afid EXteNBIONS qwiuenmns oo ismossmstomimsomissi oo asssseriesss 77
3:.26 Energy Dissipation: Coulomb DAmPING . cusmussessssmssmammisosmsssnsesisssssssisssnssssssisssms sy ssssassisss 78
3.2.7 Quadratic Damping: Aerodynamic DIag.........cccovimiiiiniiiiiiiiiiisissiise s 80
3.2.7.1 Terminal Velocity Calculation..............oocoiiiiiiiiii s 80
328 ClOSTE AT REVABYD suunussumsnsovsassonsumsosms sovssmssmonsves sied sassss s oosss Sodsussb s G50 5505 653 30 S80S SEFEVFFE R 4F5 S0 TS 83
More Motion in a Straight Line: Degrees of Freedom and Equations of Kinematic Constraints.............. 83
3.3.1 Pulleys: Equations of Motion and Equations of Constraint ..o 84
332 Linkage Problemis; More Equations of COrGEEAIN. ammusmnsrmroasassmmusimsmssiasomsmsvons nsessrssrassn 89
Motion in a Plane: Equations of Motion and Forces of Constraint.............ccocoocviiiiiniiiicnicen, 92
3.4.1 Cartesian Coordinate Applications: Trajectory Motion in a Vertical Plane.............cc.ccocoooiienn. 92
3411 Drag-Free MOotON s mmiisssssomsmrmsmsesesmsms i steasimissss o sis s s e sipsvessasmsssssiseess 92
3.4.1.2 Trajectory Motion with Aerodynamic Drag..........cccccocvnimiinninnsnnnnnninnnn 95
3.4.1.3 Trajectory Motion and Coulomb Drag ..o 96
3.4.2 Polar-Coordinate APPlCAtIONS ......... ..o s 96
3.4.2.1 Particle Sliding on the Inside of a Horizontal Cylinder without Friction......................... 9
3.4.2.2 Particle Sliding on the Inside of a Horizontal Cylinder with Coulomb Friction............. 97
34.2.3 Simple Pendulim .. ..o s 98
3424 Simple Pendulum with Damping ... s 100
343 Path-Cootdinate APPLICHIIONE ussumsuasmosssesmsss oo mmeus s s Wi st is b 102
3.44  Summary and OVeIVIEW ... s ss s st sa s e st 104
Particle Kinetics Examples with More than TDOF..........ccociiiiiiiiiiic s 105
3.5.1 Developing Equations of Motion for Problems Having More than 1IDOF............ccccccocviiiiinnnee. 105
3.5.1.1 Developing Equations of Motion for a Two-Mass Vibration Example..........cccccccoevennne. 105
3.5.1.2 Developing Equations of Motion for a Double Pendulum...........ccccccooeiininvnnnnnnn. 110
3.5.2 Analyzing Multidegree-of-Freedom Vibration Problems.............cccuiiiiiiiciiiceennns 112
3.5.21 Analyzing Undamped 2DOF Vibration Problems ..o, 112
3.5.2.2 Free Motion from Initial Conditions (the Homogeneous Solution)............ccccccevvevene. 117
3.5.2.3 Modal Damping Models ...t s 120
3.5.2.4 Steady-State Solutions due to Harmonic Excitation .........cccoceeeeeiiiiininiiecc 122
3.5.2.5 Harmonic Response With DampPing ..c.ussscsmonsssssssmmosamssssassssiosissnaivmmsssis 124
Work-Energy Applications for 1DOF Problems in Plane MOHON ..o e e 125
3.6.1 Work-Energy Equation and Its Application .............cccciriiioininiiieceeeecee e 126
3.6.1.1 More on Spring Forces and Spring Potential-Energy Functions.............ccoocovicivninnne 128
3.6.1.2  More on the Force of Gravity and the Potential-Energy Function for Gravity .............. 130
3.6.2  Deriving Equations of Motion from Work—Energy Relations...........cccoeueririrerierneeceeeseeanns 132
Linear-Momentum Applications in Plane MOtiON ........c.cooiiiiriie e 136
3.7.1  Collision Problems in One DImension ..........ccuuiieiieinieriiiiieinsniss et 137
3.7.2  Coefficient Of RESHEULION ......c.ocuiiiiuiiiiiieiirict ettt sae st st es e 138
3.7.3  Collision Problems in TWO DIMENSIONS ........ccoiuiriimiuiiiminiiiisseseseessssessssss st es st ssesssssessssseseesenes 139
Mornent 6f MOTEIEIIIN couevvmssnosmmssssasssssysisssmssoos s s s s s5imsm maesssesssmonsassnsmsarssas soxesss 142



