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Introduction

This book had its origin in some electronic mail that I received
from William S. Price a number of years ago. He needed to construct a,
Green’s function and asked me if I knew a good book that might assist
him. In suggesting several standard texts, I could not help but think
that, based on my own experiences utilizing Green’s functions alone and
in conjunction with numerical solvers, I had my own ideas on how to
present this material. It was this thought that ultimately led to the
development of this monograph.

The purpose of this book is to provide applied scientists and engi-
neers with a systematic presentation of the various methods available
for deriving a Green’s function. To this end, I have tried to make this
book the most exhaustive source book on Green’s function yet available,
focusing on every possible analytic technique rather than theory.

After some introductory remarks, the material is classified accord-
ing to whether we are dealing with an ordinary differential, wave, heat,
or Helmholtz equation. Turning first to ordinary differential equations,
we have either initial-value or boundary-value problems. After examin-
ing initial-value problems, I explore in depth boundary-value problems,
both regular and singular. There are essentially two methods: piecing
together a solution from the homogeneous solutions, and eigenfunction
expansions. Both methods are presented.

Green’s functions are particularly well suited for wave problems, as
is shown in Chapter 3 with the detailed analysis of electromagnetic waves
in surface waveguides and water waves. Before presenting this material,
some of the classic solutions in one, two, and three dimensional free



space are discussed.

The heat equation and Green’s functions have a long association
with each other. After discussing heat conduction in free space, the
classic solutions of the heat equation in rectangular, cylindrical, and
spherical coordinates are offered. The chapter concludes with an inter-
esting application: The application of Green’s functions in understand-
ing the stability of fluids and plasmas.

It is not surprising that the final chapter on Poisson’s and Helm-
holtz’s equations is the longest. Finding solutions to Poisson’s equation
gave birth to this technique and Sommerfeld’s work at the turn of the
twentieth century spurred further development. For each equation, the
techniques available for solving them as a function of coordinate system
are presented. The final section deals with the computational efficiency
of evaluating this class of Green’s functions.

This book may be used in a class on boundary-value problems or
as a source book for researchers, in which case I recommend that the
reader not overlook the problems.

Most books are written with certain assumptions concerning the
background of the reader. This book is no exception. The methods for
finding Green’s functions lean heavily on transform methods because
they are particularly well suited for handling the Dirac delta function.
For those unfamiliar with using transform methods to solve differential
equations, 1 have summarized these techniques in Appendices A and
B. In this sense, the present book is a continuation of my Transform
Methods for Solving Partial Differential Equations. Because many of
the examples and problems involve cylindrical coordinates, an appendix
on Bessel functions has been included. In particular, I cover how to find
Fourier-Bessel expansions.

A unique aspect of this book is its emphasis on the numerical eval-
uation of Green’s functions. This has taken two particular forms. First,
many of the Green’s functions that are found in the text and problem
sets are illustrated. The motivation here was to assist the reader in de-
veloping an intuition about the behavior of Green’s functions in certain
classes of problem. Second, Green’s functions are of little value if they
cannot be rapidly computed. Therefore, at several points in the book
the question of the computational efficiency and possible methods to
accelerate the process have been considered.

Special thanks go to Prof. Michael D. Marcozzi for his many useful
suggestions for improving this book. Dr. Tim DelSole provided out-
standing guidance in the section on convective/absolute instability. Dr.
Chris Linton made several useful suggestions regarding Section 5.8. Fi-
nally, I would like to express my appreciation to all those authors and
publishers who allowed me the use of their material from the scientific
and engineering literature.



Definitions of the Most Commonly Used Functions

Function Definition

it — a) ={°0° i;g . I stydt =1

H(t - a) :{é: izg a>0
I, (z) modified Bessel function of the first kind and order n
Jn(x) Bessel function of the first kind and order n

K, (z) modified Bessel function of the second kind
and order n

T< = min(r, p)
T = max(r, p)
To = min(z, &)
[ = max(z, §)
Y. (z) Bessel function of the second kind and order n
y< = min(y,n)
y> = max(y,1)
2< = min(z, ()

2> = max(z, C)
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Chapter 1

Some Background Material

One of the fundamental problems of field theory' is the construc-
tion of solutions to linear differential equations when there is a specified
source and the differential equation must satisfy certain boundary con-
ditions. The purpose of this book is to show how Green’s functions
provide a method for obtaining these solutions. In this chapter, some
of the mathematical aspects necessary for developing this technique are
presented.

1.1 HISTORICAL DEVELOPMENT

In 1828 George Green (1793-1841) published an Essay on the Ap-
plication of Mathematical Analysis to the Theory of Electricity and Mag-
netism. In this seminal work of mathematical physics, Green sought to
determine the electric potential within a vacuum bounded by conduc-
tors with specified potentials. In today’s notation we would say that
he examined the solutions of V2u = — f within a volume V that satisfy
certain boundary conditions along the boundary S.

1 Any theory in which the basic quantities are fields, such as electromagnetic
theory.



2 Green’s Functions with Applications

In modern notation, Green sought to solve the partial differential

equation
V2g(r|re) = —4wé(r — xo), (1.1.1)

where §(r — rg) is the Dirac delta function. We now know that the
solution to (1.1.1) is g = 1/R, where R? = (z— &%+ (y —n)* + (2 — ().
Although Green recognized the singular nature of g, he proceeded along
a different track. First, he proved the theorem that bears his name:

///V (6Vix = x Vi) dV = ﬁg (¢VXx - XVy) -ndS,  (1.12)

where the outwardly pointing normal is denoted by n and x and ¢ are
scalar functions that possess bounded derivatives. Then, by introducing
a small ball about the singularity at ro because (1.1.2) cannot apply
there and then excluding it from the volume V', Green obtained

/// gVQudv+#gvu-nds
v S
= /// uVigdV + # uVg-ndS — 4ru(ry), (1.1.3)
Vv S

because the surface integral over the small ball is 47u(rg) as the radius
of the ball tends to zero. Next, Green required that both g and u satisfy
the homogeneous boundary condition u = 0 along the surface S. Since
V?u = —f and V?g = 0 within V (recall that the point ry is excluded
from V'), he found

ulr) = %}éﬁﬂ Vg-ndS, (1.1.4)

when f = 0 (Laplace’s equation) for any point r within S, where @
denotes the value of u on the boundary S. This solved the boundary-
value problem once g was found. Green knew that g had to exist; it
physically described the electrical potential from a point charge located
at rg.

Green’s essay remained relatively unknown until it was published?
between 1850 and 1854. With its publication the spotlight shifted to the
German school of mathematical physics. Although Green himself had
not given a name for g, Riemann® (1826-1866) would subsequently call

2 Green, G., 1850, 1852, 1854: An essay on the application of mathematical
analysis to the theories of electricity and magnetism. J. reine angewand. Math., 39,
73-89; 44, 356-374; 47, 161-221.

3 Riemann, B., 1869: Vorlesungen tiber die partielle Differentialgleichungen der
Physik, §23; Burkhardt, H., and W. F. Meyer, 1900: Potentialtheorie in Encyklop.
d. math. Wissensch., 2, Part A, 462-503. See §18.
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Figure 1.1.1: Originally drawn to mathematics, Arnold Johannes Wilhelm Som-
merfeld (1868-1951) migrated into physics due to Klein’s interest in applying the
theory of complex variables and other pure mathematics to a range of physical top-
ics from astronomy to dynamics. Later on, Sommerfeld contributed to quantum
mechanics and statistical mechanics. (Portrait, AIP Emilio Segre Visual Archives,
Margrethe Bohr Collection.)

it the “Green’s function.” Then, in 1877, Carl Neumann? (1832-1925)
embraced the concept of Green’s functions in his study of Laplace’s
equation, particularly in the plane. He found that the two-dimensional
equivalent of the Green’s function was not described by a singularity of
the form 1/|r —ro| as in the three-dimensional case but by a singularity
of the form log (1/|r — ry|).

With the function’s success in solving Laplace’s equation, other
equations began to be solved using Green’s functions. In the case of

4 Neumann, C., 1877: Untersuchungen tiber das Logarithmische und Newton’sche
Potential, Teubner, Leipzig.



4 Green’s Functions with Applications

the heat equation, Hobson® (1856-1933) derived the free-space Green’s
function for one, two and three dimensions and the French mathemati-
cian Appell® (1855-1930) recognized that there was a formula similar
to Green’s for the one-dimensional heat equation. However, it fell to
Sommerfeld” (1868-1951) to present the modern theory of Green’s func-
tion as it applies to the heat equation. Indeed, Sommerfeld would be
the great champion of Green’s functions at the turn of the twentieth
century.®

The leading figure in the development of Green’s functions for the
wave equation was Kirchhoff® (1824-1887), who used it during his study
of the three-dimensional wave equation. Starting with Green’s second
formula, he was able to show that the three-dimensional Green’s func-

tion is 5 R/o)
- T — C
g(mayazatlévn:CaT) - T, (118)

where R = /(z — )2 + (y — 1) + (z — {)? (modern terminology). Al-
though he did not call his solution a Green’s function,!® he clearly
grasped the concept that this solution involved a function that we now
call the Dirac delta function (see pg. 667 of his Annalen d. Physik’s
paper). He used this solution to derive his famous Kirchhoff’s theorem,
which is the mathematical expression for Huygen’s principle.

The application of Green’s function to ordinary differential equa-
tions involving boundary-value problems began with the work of Burk-
hardt!! (1861-1914). Using results from Picard’s theory of ordinary
differential equations, he derived the Green’s function given by (1.5.35)
as well as the properties listed in §2.3. Later on, Bocher!? (1867-1918)
extended these results to nth order boundary-value problems.

5 Hobson, E. W., 1888: Synthetical solutions in the conduction of heat. Proc.
London Math. Soc., 19, 279-294.

6 Appell, P., 1892: Sur Péquation 225 — 92 = 0 et la théorie de la chaleur. J.
Math. pures appl., 4 série, 8, 187-216.

7 Sommerfeld, A., 1894: Zur analytischen Theorie der Wiérmeleitung. Math.
Ann., 45, 263-277.

8 Sommerfeld, A., 1912: Die Greensche Funktion der Schwingungsgleichung.
Jahresber. Deutschen Math.- Vereinung, 21, 309-353.

® Kirchhoff, G., 1882: Zur Theorie der Lichtstrahlen. Sitzber. K. Preuss. Akad.
Wiss. Berlin, 641-669; reprinted a year later in Ann. Phys. Chem., Neue Folge,
18, 663-695.

10 This appears to have been done by Gutzmer, A., 1895: Uber den analytischen
Ausdruck des Huygens’schen Princips. J. reine angewand. Math., 114, 333-337.

11 Burkhardt, H., 1894: Sur les fonctions de Green relatives a un domaine d’une
dimension. Bull. Soc. Math., 22, 71-75.

12 Bacher, M., 1901: Green’s function in space of one dimension. Bull. Amer.
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Figure 1.1.2: Gustav Robert Kirchhoff’s (1824-1887) most celebrated contributions
to physics are the joint founding with Robert Bunsen of the science of spectroscopy,
and the discovery of the fundamental law of electromagnetic radiation. Kirchhoff’s
work on light coincides with his final years as a professor of theoretical physics
at Berlin. (Portrait taken from frontispiece of Kirchhoff, G., 1882: Gesammelte
Abhandlungen. J. A. Barth, 641 pp.)

1.2 THE DIRAC DELTA FUNCTION

Since the 1950s, when Schwartz!® (1915~ ) published his theory of
distributions, the concept of generalized functions has had an enormous
impact on many areas of mathematics, particularly on partial differential
equations. In this section, we introduce probably the most important
generalized function, the Dirac delta function. As we shall shortly see,
the entire concept of Green’s functions is intimately tied to this most
“unusual” function.

Math. Soc., Ser. 2, T, 297-299; Bocher, M., 1911/12: Boundary problems and
Green’s functions for linear differential and difference equations. Annals Math., Ser.
2,13, 71-88.

13 Schwartz, L., 1973: Théorie des distributions. Hermann, 418 pp.



6 Green’s Functions with Applications

Figure 1.2.1: Laurent Schwartz’ (1915 ) work on distributions dates from the
late 1940s. For this work he was awarded the 1950 Fields medal. (Portrait courtesy
of the Ecole Polytechnique, France.)

For many, the Dirac delta function had its birth with the quantum
mechanics of Dirac!* (1902-1984). Modern scholarship'® has shown,
however, that this is simply not true. During the nineteenth century,
both physicists and mathematicians used the delta function although
physicists viewed it as a purely mathematical idealization that did not
exist in nature, while mathematicians used it as an intuitive physical
notion without any mathematical reality.

It was the work of Oliver Heaviside (1850-1925) and the birth of
electrical engineering that brought the delta function to the attention
of the broader scientific and engineering community. In his treatment
of a cable that is grounded at both ends, Heaviside'® introduced the
delta function via its sifting property (1.2.9). Consequently, as Laplace
transforms became a fundamental tool of electrical engineers, so too did

14 Dirac, P., 1926-7: The physical interpretation of the quantum dynamics. Proc.
R. Soc. London, A113, 621-641.

15 Liitzen, J., 1982: The Prehistory of the Theory of Distributions. Springer-
Verlag, 232 pp. See chap. 4, part 2.

16 Heaviside, O., 1950: Electromagnetic Theory. Dover Publications, Inc., §267.
See Eq. 24.
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Figure 1.2.2: Paul Adrien Maurice Dirac (1902-1984) ranks among the giants of
twentieth-century physics. Awarded the 1933 Nobel Prize in physics for his rela-
tivistic quantum mechanics, Dirac employed the delta function during his work on
quantum mechanics. In later years, Dirac also helped to formulate Fermi-Dirac statis-
tics and contributed to the quantum theory of electromagnetic radiation. (Portrait
reproduced by permission of the President and Council of the Royal Society.)

the use of the delta function.

Despite the delta function’s fundamental role in electrical engineer-
ing and quantum mechanics, by 1945 there existed several schools of
thought concerning its exact nature because Dirac’s definition:

0, t=10,
o(t) = { 0 t#0 (1.2.1)
such that &
/ o(t)dt =1, (1.2.2)

was unsatisfactory; no conventional function could be found that satis-
fied (1.2.2).

One approach, especially popular with physicists because it agreed
with their physical intuition of a point mass or charge, sought to view the
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Figure 1.2.3: Frames (a)-(d) illustrate the delta sequences (1.2.4), (1.2.5), [t —
cos(nz)]/(nmx?), and (1.2.6) as a function of z, respectively. The solid, dotted and
dashed lines correspond to n = 1, n = 10 and n = 100, respectively.

delta function as the limit of the sequence of strongly peaked functions
dn(8):

5(t) = lim 4,(2), (1.2.3)
Candidates!” included
n 1
da(t) = —%e_"2‘2, (1.2.5)
and )
1 sin®(nt)

The difficulty with this approach was that the limits of these sequences
may not exist.

17 Kirchhoff ® gave (1.2.5) in the limit of n — oo as an example of a delta function.



