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Foreword to Earlier Series Editions

More than a generation of German-speaking students around the world have
worked their way to an understanding and appreciation of the power and beauty
of modern theoretical physics — with mathematics, the most fundamental of
sciences — using Walter Greiner’s textbooks as their guide.

The idea of developing a coherent, complete presentation of an entire field
of science in a series of closely related textbooks is not a new one. Many older
physicists remember with real pleasure their sense of adventure and discovery
as they worked their ways through the classic series by Sommerfeld, by Planck
and by Landau and Lifshitz. From the students’ viewpoint, there are a great
many obvious advantages to be gained through use of consistent notation, logi-
cal ordering of topics and coherence of presentation: beyond this, the complete
coverage of the science provides a unique opportunity for the author to convey
his personal enthusiasm and love for his subject. ‘

The present five volume set, Theoretical Physics, is in fact only that part of
the complete set of textbooks developed by Greiner and his students that presents
the quantum theory. 1 have long urged him to make the remaining volumes on
classical mechanics and dynamics, on electromagnetism, on nuclear and particle
physics, and on special topics available to an English-speaking audience as well,
and we can hope for these companion volumes covering all of theoretical physics
some time in the future.

What makes Greiner's volumes of particular value to the student and profes-
sor alike is their completeness. Greiner avoids the all too common “it follows
that ... ” which conceals several pages of mathematical manipulation and
confounds the student. He does not hesitate to include experimental data to illu-
minate or illustrate a theoretical point and these data, like the theoretical content,
have been kept up to date and topical through frequent revision and expansion of
the lecture notes upon which these volumes are based.

Moreover, Greiner greatly increases the value of his presentation by includ-
ing something like one hundred completely worked examples in each volume.
Nothing is of greater importance to the student than seeing, in detail, how the
theoretical concepts and tools under study are applied to actual problems of inter-
est to a working physicist. And, finally, Greiner adds brief biographical sketches
to each chapter covering the people responsible for the development of the the-
oretical ideas and/or the experimental data presented. It was Auguste Comte
(1798~1857) in his Positive Philosophy who noted, “To understand a science
it is necessary to know its history”. This is all too often forgotten in modern
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physics teaching and the bridges that Greiner builds to the pioneering figures of
our science upon whose work we build are welcome ones.

Greiner’s lectures, which underlie these volumes, are internationally noted
for their clarity, their completeness and for the effort that he has devoted to mak-
ing physics an integral whole; his enthusiasm for his science is contagious and
shines through almost every page.

These volumes represent only a part of a unique and Herculean effort to make
all of theoretical physics accessible to the interested student. Beyond that, they
are of enormous value to the professional physicist and to all others working with
quantum phenomena. Again and again the reader will find that, after dipping into
a particular volume to review a specific topic, he will end up browsing, caught
up by often fascinating new insights and developments with which he had not
previously been familiar.

Having used a number of Greiner’s volumes in their original German in my
teaching and research at Yale, I welcome these new and revised English trans-
lations and would recommend them enthusiastically to anyone searching for
a coherent overview of physics.

Yale University D. Allan Bromley
New Haven, CT, USA Henry Ford II Professor of Physics
1989



Preface to the Second Edition

We are pleased to note that our text Quantum Mechanics — Symmetries has
found many friends among physics students and researchers so that the need
for a second edition has arisen. We have taken this opportunity to make sev-
eral amendments and improvements to the text. We have corrected a number
of misprints and minor errors and have added explanatory remarks at various
places. In addition to many other smaller changes the sections 8.6, 8.11, and 11.4
and the exercises 3.9, 7.8, and 9.5 have been expanded. Two new exercises on
the Wigner-Eckart theorem (Ex. 5.8) and on the completeness relation for the
SU(N) generators (Ex. 11.3) have been added. Finally, the Mathematical Sup-
plement on Lie groups (Chap. 12) has been carefully checked and received a new
introductory section.

We thank several colleagues for helpful comments, especially Prof. L. Wilets
(Seattle) for providing a list of errors and misprints. We are greatly indebted to
Prof. P.0. Hess (University of Mexico) for making available corrections and valu-
able material for Chap. 12. We also thank Dr. R. Mattiello who has supervised
the preparation of the second edition of the book. Finally we acknowledge the
agreeable collaboration with Dr. H.J. Kélsch and his team at Springer-Verlag,
Heidelberg.

Frankfurt am Main and Durham, NC, USA Walter Greiner
July 1994 Berndt Miiller

Preface to the Third Printing

We are pleased to note that our Quantum Mechanics: Symmetries has found
many friends among physics students and researchers so that the need for a third
printing has arisen. We have taken this opportunity to make amendments and
improvements to the text. A number of misprints and minor errors have been cor-
rected and explanatory remarks have been given at various places. Several new
examples and exercises and, in particular, a short chapter (Chap. 16) on the proof
of Racah’s theorem have been added.
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Preface to the Third Printing

We thank several colleagues and students for helpful comments, particularly
Prof. Dr. Peter Hess (Instituto de Ciencias Nucleares, UNAM, Mexico City) and
Dr. Ulrich Eichmann who helped to improve some exercises and examples and to
prepare this third printing. Finally we acknowledge the agreeable collaboration
with Dr. H.J. Kélsch and his team at Springer-Verlag, Heidelberg.

Frankfurt am Main Walter Greiner
July 2001



Preface to the First Edition

Theoretical physics has become a many-faceted science. For the young student it
is difficult enough to cope with the overwhelming amount of new scientific ma-
terial that has to be learned, let alone obtain an overview of the entire field, which
ranges from mechanics through electrodynamics, quantum mechanics, field the-
ory, nuclear and heavy-ion science, statistical mechanics, thermodynamics, and
solid-state theory to elementary-particle physics. And this knowledge should be
acquired in just 8—10 semesters, during which, in addition, a Diploma or Mas-
ter’s thesis has to be worked on or examinations prepared for. All this can be
achieved only if the university teachers help to introduce the student to the new
disciplines as early on as possible, in order to create interest and excitement that
in turn set free essential, new energy. Naturally, all inessential material must
simply be eliminated. '

At the Johann Wolfgang Goethe University in Frankfurt we therefore con-
front the student with theoretical physics immediately, in the first semester.
Theoretical Mechanics I and II, Electrodynamics, and Quantum Mechanics I —
An Introduction are the basic courses during the first two years. These lectures
are supplemented with many mathematical explanations and much support ma-
terial. After the fourth semester of studies, graduate work begins, and Quantum
Mechanics II - Symmetries, Statistical Mechanics and Thermodynamics, Rela-
tivistic Quantum Mechanics, Quantum Electrodynamics, the Gauge Theory of
Weak Interactions, and Quantum Chromodynamics are obligatory. Apart from
these, a number of supplementary courses on special topics are offered, such as
Hydrodynamics, Classical Field Theory, Special and General Relativity, Many-
Body Theories, Nuclear Models, Models and Elementary Particles, and Solid-
State Theory. Some of them, for example the two-semester courses Theoretical
Nuclear Physics and Theoretical Solid-State Physics, are also obligatory.

The form of the lectures that comprise Quantum Mechanics — Symmetries
follows that of all the others: together with a broad presentation of the necessary
mathematical tools, many examples and exercises are worked through. We try
to offer science in a way as interesting as possible. With symmetries in quantum
mechanics we are dealing with a particularly beautiful theme. The selected mate-
rial is perhaps unconventional, but corresponds, in our opinion, to the importance
of this field in modern physics.

After a short reminder of some symmetries in classical mechanics, the great
importance of symmetries in quantum mechanics is outlined. In particular, the
consequences of rotational symmetry are described in detail, and we are soon
led to the general theory of Lie groups. The isospin group, hypercharge, and
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SU(3) symmetry and its application in modemn elementary-particle physics are
broadly outlined. Essential mathematical theorems are first quoted without proof
and heuristically illustrated to show their importance and meaning. The proof can
then be found in detailed examples and worked-out exercises.

A mathematical supplement on root vectors and classical Lie algebras deep-
ens the material, the Young-tableaux technique is broadly outlined, and, by way
of a chapter on group characters and another on charm, we lead up to very mod-
ern questions of physics. Chapters on special discrete symmetries and dynamical
symmetries round off these lectures. These are all themes which fascinate young
physicists, because they show them that as early as the fifth semester they can
properly address and discuss questions of frontier research.

Many students and collaborators have helped during the years to work out ex-
amples and exercises. For this first English edition we enjoyed the help of Maria
Berenguer, SnjeZana Butorac, Christian Derreth, Dr. Klaus Geiger, Dr. Matthias
Grabiak, Carsten Greiner, Christoph Hartnack, Dr. Richard Herrmann, Raf-
faele Mattiello, Dieter Neubauer, Jochen Rau, Wolfgang Renner, Dirk Rischke,
Thomas Schénfeld, and Dr. Stefan Schramm. Miss. Astrid Steidi drew the graphs
and prepared the figures. To all of them we express our sincere thanks. We are
also grateful to Dr. K. Langanke and Mr. R. K6nning of the Physics Department
of the University in Miinster for their valuable comments on the German edition.
_ We would especially like to thank Mr. Béla Waldhauser, Dipl.-Phys., for his

overall assistance. His organizational talent and his advice in technical matters
are very much appreciated.

Finally, we wish to thank Springer-Verlag; in particular, Dr. H.-U. Daniel, for
his encouragement and patience, and Mr. Michael Edmeades, for expertly copy-
editing the English edition.

Frankfurt am Main Walter Greiner
July 1989 Berndt Miiller
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1. Symmetries in Quantum Mechanics

1.1 Symmetries in Classical Physics

Symmetries play a fundamental role in physics, and knowledge of their presence
in certain problems often simplifies the solution considerably. We illustrate this
with the help of three important examples.

(a) Homogeneity of Space. We assume space to be homogeneous, i.e. of equal
structure at all positions 7. This is synonymous with the assumption that the so-
lution of a given physical problem is invariant under translations, because in
this case the area surrounding any point can be mapped exactly by a translation
from a similar area surrounding an arbitrary point (Fig. 1.1). This “translation-
invariance” implies the conservation of momentum for an isolated system. Here
we define homogeneity of space to mean that the Lagrange function L(r;, F;, t)
of a system of particles remains invariant if the particle coordinates r; are re-
placed by r; +a, where a is an arbitrary constant vector. (A more general concept
of “homogeneity of space” would require only the invariance of the equa-
tions of motion under spatial translation. I this case a conserved quantity can
also be shown to exist, but it is not necessarily the canonical momentum. See
Exercises 1.3 and 1.5 for a detailed discussion of this aspect.) Thus

3L
5L = Z— ori = o =0 (1.1)
i

must be valid. Since a is arbitrary this implies
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Here we have abbreviated

oL _ oL 9L oL
ar,  |ox;’ 8y’ 8z

the gradient of L with respect to r;. From the EulerQLagrange equations

drox;  ox;

Ry az

y—)
Py

Fig.1.1. Homogeneity or
translational invariance of
space means that the area
around P follows from that
of any other arbitrary point
(e.g. Pi, Py, ...) by transla-
tions (a|, a3, ...)



