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Preface

The field of probabilistic structural dynamics has evolved from infancy in the late
1950s to a mature scientific discipline today. Its applications are found in many
branches of engineering—aeronautical, astronautical, civil, mechanical, and others.
A comprehensive text on the subject requires a balanced treatment of both the mathe-
matical theory of stochastic processes and structural mechanics. This book is a sequel
to Probabilistic Theory of Structural Dynamics,” written with these goals in mind.
The present volume contains some advanced material not generally available at
the time of publication of its predecessor volume; thus it is a supplement in several
different areas, the most important being the inclusion of multiplicative random ex-
citations on a dynamical system. More thorough treatments of Markov processes are
given in Chapters 4, 5, and 7, including the justification of the Markov model ideal-
ization from a physical point of view, and the techniques of exact and approximate
solutions, applicable to cases of additive random excitations, multiplicative random
excitations, or both. Motion stability of dynamical systems due to multiplicative ex-
citations is considered in Chapter 6. Failures due to excursion of the system response
into an unsafe region are treated in Chapter 8, again relying strongly on Markov pro-
cess modeling. Even though the coverage in the earlier volume is still adequate
for linear systems under additive random excitations, more rigorous presentations of
spectral analysis are given in Chapters 2 and 3 along with recent applications. Chap-
ter 9 is devoted to random uncertainties of system parameters and initial conditions.

*Referring to Y. K. Lin, Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York, 1967;
reprint R. E. Krieger, Melbourne, Florida, 1976.



XiV  PREFACE

The progress made in this and related technical fields during the past nearly
three decades has been tremendous. It is unavoidable that some important contribu-
tions are omitted, or only briefly touched upon, if the materials are considered not
essential for the development of the main themes in the book. When quoting a ref-
erence, preference is given to the original literary source; thus many excellent text-
books are not included in our citations. Attempts are made to keep the exposition of
mathematical principles rigorous and yet comprehensible to engineers with a sound
background of mechanics. The combination of the present and the 1967 volumes has
been used successfully for a sequence of two graduate courses in structural engineer-
ing or engineering mechanics at the University of lllinois at Urbana-Champaign and
at Florida Atlantic University. The inclusion of many examples in earthquake and
wind engineering also makes the texts suitable references for researchers on these
subjects. Nevertheless, the present volume is by and large self-contained; therefore,
immediate access to the earlier volume is not necessary.

Much of the material in the book was generated from sponsored research dur-
ing the past twenty years. We are indebted to the sponsors of our research projects,
including National Science Foundation, National Aeronautics and Space Adminis-
tration, Army Research Office, Air Force Office of Scientific Research, Office of
Naval Research, and National Center for Earthquake Engineering Research.

It is a pleasure to acknowledge the help received during the preparation of
the manuscript. We are indebted to S. T. Ariaratnam of University of Waterloo,
Canada, who made valuable suggestions on Chapters 4 and 6, and to our colleague
I. Elishakoff, who commented on Chapters 1 through 3. Constructive criticisms pro-
vided by the following reviewers on behalf of McGraw-Hill are also gratefully ac-
knowledged: Mircea Grigoriu, Cornell University; Pol Spanos, Rice University; and
Y. K. Wen, University of Illinois.

Y K Lin
G. Q. Cai
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CHAPTER

1

INTRODUCTION

Probabilistic or stochastic structural dynamics is a subject dealing with uncertainty in
the motion of engineering structures. The cause of motion uncertainty may be the un-
predictability of excitations, the imperfection or lack of accurate information in the
modeling of physical problems, or a combination of these. Mathematically speak-
ing, modeling a dynamic system is equivalent to setting up the governing equations
and specifying the initial and boundary conditions. Thus a probabilistic dynamics
problem is posed in probabilistic terms about such equations and conditions, and the
problem is solved by providing answers to the ensuing motion also in probabilistic
terms.

The idea can best be illustrated by a simple example. Shown in Fig. 1.0.1 isa
massless pendulum subjected to two random forces: a vertical force P[1 + £,(#)] and
a horizontal force P&(¢), where P is a constant; & (¢) and & (¢) are random functions
of time or stochastic processes. Assuming that the two hinges shown in the figure
are frictionless and the linkage between them rigid, the equation of motion for this
dynamic system can be obtained by equating the clockwise and counterclockwise
moments about the upper hinge to yield

cd—di[l sin @)}l cos 8(z) + P[1 + &)l sin0(t) = P&(t)lcosO(r) (1.0.1)

where ¢ = damping coefficient, I = length of the pendulum, and 8(¢) is the angular
displacement that describes the motion of the pendulum. The uncertainty in 6(z)
may be due to uncertainties in & (¢), &(f), ¢, [, P, and the initial condition 6(0),
individually or in any combinations. Some simplifying assumptions are implied
when writing equation (1.0.1), so that the equation is rather simple but still ade-
quate to convey the basic idea. These assumptions include, for example, frictionless
hinges, a rigid linkage between the hinges, and negligible inertial properties of the

1



2 PROBABILISTIC STRUCTURAL DYNAMICS

Pl1+&,(0]
S0 FIGURE 1.0.1

A massless pendulum under random
excitations.

system. Otherwise, a partial differential equation in both space and time, with higher
derivative terms, will be required to describe the system, and the question of uncer-
tainty in other system parameters in the modeling will also arise.

On the other hand, equation (1.0.1) may be simplified further if the angular
displacement 8(¢) is small. We then can use the usual approximations sin 8(f) =~ 6(t)
and cos 0(¢) =~ 1, reducing the equation to a linear one:

Lo + 1+ 60100 = £ (1.02)

In the present form, we have lumped the three system parameters into one factor
(cl/P), which can be modeled as one random variable. The initial condition 6(0) may
be another random variable, and the two excitations & (¢) and &(#) two stochastic pro-
cesses. The problem is posed by specifying the probabilistic or statistical properties
of these random variables and stochastic processes, and the solution is obtained in
terms of the corresponding properties for 6(¢).

As seen in equation (1.0.1) or (1.0.2), a random excitation may appear in the
coefficient of the unknown, or as an inhomogeneous term on the right-hand side of an
equation. These two types of random excitations are described as being multiplica-
tive and additive, respectively, referring directly to their positions in a governing
equation. They are also called the parametric and external random excitations, re-
spectively, in the literature, referring more to their physical furictions. Even though a
parametric random excitation may be generated from an outside source, it causes the
basic characteristics of the dynamical system to change randomly with time, whereas
an external random excitation does not affect the basic characteristics of the system.
In particular, a stable system can become unstable, or vice versa, with the presence
of multiplicative excitations.



INTRODUCTION 3

A more complicated dynamical system may be represented by a set of ordinary

differential equations of the type
d .
X0 = [IXO N+ g X0.060)  j=12...N k=12...M
(1.0.3)

where X(¢) = {X1(2), Xa2(p), ..., Xy ()} is a vector of system response variables, &(f)
are random excitations, functions f; and g ; can be either linear or nonlinear, and a
repeated subscript in a product indicates a summation. Such a summation conven-
tion will be used elsewhere in this book. The class of dynamical systems represented
by equation (1.0.3) is actually quite general. It includes continuous structures of fi-
nite size which can be discretized using, for example, a Galerkin or finite-element
procedure. The first-order form of the differential equations is not a restriction, be-
cause a higher order equation can be replaced by an equivalent set of first-order
equations. If uncertainties in the modeling of the system itself are not considered,
then the functional forms of f; and g j; are deterministic. A random excitation &(#)
is multiplicative or additive, depending on whether the associated g function does
or does not depend explicitly on the components of X(r).

Several solution techniques for systems governed by equations of the type of
(1.0.3) are discussed in this book. Only the excitations are assumed to be random,
except in Chapter 9.



CHAPTER

SPECTRAL
ANALYSIS

Spectral analysis in stochastic dynamics is a generalization of Fourier analysis in de-
terministic dynamics; therefore, it has the same limitations that the dynamic system
must be linear and time-invariant. Under these limitations, functions f; in equation
(1.0.3) must be linear in the components of X(¢), and functions g ;; must be indepen-
dent of X(¢). In particular, spectral analysis cannot be used to treat a system under
multiplicative random excitations even when the system is linear.

When a stochastic dynamics problem is solved using spectral analysis, both
the random excitations and the system response variables are expressed as Fourier
integrals. In the theory of stochastic processes, differentiation and integration may be
defined in terms of convergence in several ways, the most commonly used one being
convergence in the mean-square or L sense. For convenience, some key results of
the L, calculus are given below. Readers unfamiliar with these convergence concepts
are referred to Lin (1967) for details.

Let X(¢) be a continuously valued and continuously parametered stochastic
process, with an autocorrelation function

dxx(t, 1) = E[X(t)X"(12)] (2.0.1)

where E[-] indicates an ensemble average and an asterisk denotes the complex con-
jugate. We have the following results.

Continuity. X(¢) is continuous at ¢ in the L sense, denoted by

l;’i.n(}. X+ h) = X(1) 2.0.2)

if and only if ¢xx(zy, t2) is continuous along the diagonal t; = #, = t, where the
symbol Li.m. reads limit in the mean.

4



SPECTRAL ANALYSIS 5

Differentiability. X(r) is differentiable in the L, sense; that is,

X(t + h) — X(©)
h

exists, if and only if (%/9t;0t,)pxx(t1, t2) exists along the diagonal t; = 1, = r.

X@) = %X(t) =1 (2.0.3)

Integrability. X(¢) is Riemann-integrable in the L, sense; that is,

Y(r) = J h(t, NX(T)dT = 11 m. Zh(t T )X(Tj)('TJ.H 7) 2.0.4)

An—>° j=1

exists, where A(f, 7) is a deterministic weighting function, a = iy <71 < -+ <
Tasl = b, 7} = ij =< Tj;1,and A, = max(7;4; — 7)), if and only if

b b
I(t) = f f h(t, TR (t, Woxx (T, u)dr du < (2.0.5)

a Ja

When applied to the spectral analysis of a stochastic process, the L, integral
in the Riemann form is not entirely satisfactory. Thus we introduce a more general
L; integral in the Stieltjes form as follows:

Y(r) = j h(t, ) dZ(1) = 11m Zh(t, TIZ(7j+1) — Z(7)] (2.0.6)

An—>0 j=1
Equation (2.0.6) reduces to (2.0.4) if Z(z) is differentiable, so that dZ(1) = X(7)dr.

However, (2.0.6) is meaningful even if Z(¢) is not differentiable. The L,-Stieltjes
integral (2.0.6) exists if and only if

b b
I(t) = f J h(t, TR (t, WE[dZ(T)dZ* (u)] < o (2.0.7)

where E[dZ(1)dZ*(w)] = E{[Z(t + d7) — Z(DIZ"(u + du) — Z*w)]} (2.0.8)

Commutability of L, limit and ensemble averaging. If an L, limit exists, then the
order in which the limit and the ensemble average are taken can be interchanged.
For example, if (d/df)X(t) exists as an L, derivative, then

E{[ X(tl)][ d y (tz)}} ﬁt"at EIX()X" (1)) (2.09)
- . 2
or it 1) = E[X()X*(1)] = a:a&(ﬁxx(tbtz) (20.10)

Therefore, the autocorrelation function of the derivative process X (?) can be obtained
as the mixed second derivative of the autocorrelation function ¢xx(¢1, £,) of the orig-
inal process X(¢). Moreover,

E[X%(n) = [

2

af b, tz)} 2.0.11)

==t
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The boundedness of the right-hand side of (2.0.11) is precisely the necessary and
sufficient condition for the existence of X(¢).

It can also be shown that the necessary and sufficient condition (2.0.5) for the
L;-Riemann integral Y (¢), defined in (2.0.4), amounts to requiring that the mean-
square value E[Y?(#)] be finite, and that the autocorrelation of Y () can be obtained
from

b rb
¢yy(t1, ) = J J h(tl, T)h*(tz, u)¢xx(7', u) drdu (2012)

a a

The case of the L,-Stieltjes integral is similar.

2.1 STOCHASTIC PROCESSES WITH
UNCORRELATED AND ORTHOGONAL
INCREMENTS

To explain several subtle points in the Fourier-Stieltjes integral representation of a
stochastic process, we require two fundamental concepts.
Let Z(w) be a complex-valued stochastic process, definedon a = w = b, sat-
isfying
El|Z@) - Zw)1<> a<wo,w,=b (2.1.1)

Definition. Z(w) is said to be a stochastic process with uncorrelated increments if

E{[Z(w2) ~ Z(@)[Z"(w4) — Z"(@3)]} = E[Z(w3) — Z(@)E[Z (w4) — Z*(w3)]
(2.1.2)

for any nonoverlapping intervals (w;, w;] and (w3, w4], where a < ) < w3 < w3 <
w4 = b, and (w}, wy] denotes an interval w; < w = wy which includes point w but
not point @ ;. This common practice of representing a closed end of an interval by a
bracket and an open end by a parenthesis is followed hereafter.

Definition. Z(w) is said to be a stochastic process with orthogonal increments if it has
uncorrelated increments, and if the right-hand side of (2.1.2) is equal to zero.

It is clear from the preceding definition that if Z(w) is a stochastic process
with orthogonal increments, then Y(w) = Z(w) — Zp is also a stochastic process
with orthogonal increments, where Zj is an arbitrary random variable and E[|Zy]?]
is finite. In particular, Zy may be chosen as Z(w), where wy is an arbitrary reference

point on the w axis.
It can easily be shown that if Z(w) is a stochastic process with orthogonal

increments, then

E{[Z(@3) ~ Z@)Z (w4) — Z* ()]} = E{|Z(@3) - Z(wp)|?} (2.1.3)

a=w<wr=w3<ws=0>b
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2.2 SPECTRAL REPRESENTATION OF A
CORRELATION-STATIONARY STOCHASTIC
PROCESS

Let Z(w) be a stochastic process with orthogonal increments, and let wg be an arbi-

trarily chosen reference point on the w axis. Define a deterministic function
2

E{|Z(w) = Z(wo)|} 0 = wg

) 2.2.1)
—E{|Z@o) - Z@)|'} @ <wo

Y(w) = [

which implies that ¥(wo) = 0. It can be shown that if w; = w1, then regardless of
the choice of wy,

E{|Z(02) - Z(w))|*} = Ww2) — Ww)) 2.2.2)

We shall now prove that (2.2.2) is valid when wg < w; = w,. Note that the
left-hand side of (2.2.2) is equal to

E{[Z(w2) — Z(@D)][Z*(w2) — Z*(w1)]}

= E({[Z(w2) — Z(w0)] — [Z(w1) ~ Z(w)]} {[Z*(@2) — Z*(wo)] (2.2.3)

= [Z*(@1) — Z*(wo)]})
Upon expanding the right-hand side of (2.2.3) and using (2.1.3) and (2.2.1), we ob-
tain

ths = V(w;) — W(w;) ~ V(w)) + V(w;) = V(w;) — W(w;) (2.2.4)

which agrees with the right-hand side of (2.2.2). The cases of v < wg < w, and
w1 < wy < wy are left as exercises for the reader.

Since the left-hand side of (2.2.2) is nonnegative, ¥(w) must be nondecreasing.
In particular, letting w; = w, wy = w + dw in (2.2.2), we obtain

E{|dZ ()|} = d¥(w) (2.2.5)
Some comments on the result (2.2.5) are in order:

1. If ¥(w) is not differentiable at some w ;, then d'¥(w ;) can be finite. In this case,
dZ(w ;) is also finite.

2. If ¥(w) is differentiable, that is, d¥(w) = O(dw), where O(-) denotes the order
of magnitude of the quantity within the parentheses, then dZ(») = O(J/dw).

Therefore, a stochastic process with orthogonal increments is always not differen-

tiable.
The definition given in Section 2.1 for an orthogonal-increment process is not

readily useful in subsequent applications. We next develop an alternative equivalent



