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Preface

The golden age of mathematics—that was not
the age of Euclid, it is ours.

C.J. KEYSER

This time of writing is the hundredth anniversary of the publication (1892)
of Poincaré’s first note on topology, which arguably marks the beginning
of the subject of algebraic, or “combinatorial,” topology. There was earlier
scattered work by Euler, Listing (who coined the word “topology”), Mdbius
and his band, Riemann, Klein, and Betti. Indeed, even as early as 1679, Leibniz
indicated the desirability of creating a geometry of the topological type. The
establishment of topology (or “analysis situs” as it was often called at the
time) as a coherent theory, however, belongs to Poincaré.

Curiously, the beginning of general topology, also called “point set
topology,” dates fourteen years later when Fréchet published the first abstract
treatment of the subject in 1906.

Since the beginning of time, or at least the era of Archimedes, smooth
manifolds (curves, surfaces, mechanical configurations, the universe) have
been a central focus in mathematics. They have always been at the core of
interest in topology. After the seminal work of Milnor, Smale, and many
others, in the last half of this century, the topological aspects of smooth
manifolds, as distinct from the differential geometric aspects, became a subject
in its own right. While the major portion of this book is devoted to algebraic
topology, I attempt to give the reader some glimpses into the beautiful and
important realm of smooth manifolds along the way, and to instill the tenet
that the algebraic tools are primarily intended for the understanding of the
geometric world.

This book is intended as a textbook for a beginning (first-year graduate)
course in algebraic topology with a strong flavoring of smooth manifold
theory. The choice of topics represents the ideal (to the author) course.
In practice, however, most such courses would omit many of the subjects in
the book. I would expect that most such courses would assume previous
knowledge of general topology and so would skip that chapter, or be limited
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vi Preface

to a brief run-through of the more important parts of it. The section on
homotopy should be covered, however, at some point. I do not go decply
into general topology, but I do believe that I cover the subject as completely
as a mathematics student needs unless he or she intends to specialize in that
area.

It is hoped that at least the introductory parts of the chapter on
differentiable manifolds will be covered. The first section on the Implicit
Function Theorem might best be consigned to individual reading. In practice,
however, I expect that chapter to be skipped in many cases with that material
assumed covered in another course in differential geometry, ideally concurrent.
With that possibility in mind, the book was structured so that that material
is not essential to the remainder of the book. Those results that use the
methods of smooth manifolds and that are crucial to other parts of the
book are given scparate trcatment by other mcthods. Such duplication is
not so large as to be consumptive of time, and, in any case, is desirable from
a pedagogic standpoint. Even the material on differential forms and
de Rham’s Theorem in the chapter on cohomology could be omitted with
little impact on the other parts of the book. That would be a great shame,
however, since that material is of such interest on its own part as well as
serving as a motivation for the introduction of cohomology. The section on
the de Rham theory of CP" could, however, best be left to assigned reading.
Perhaps the main use of the material on differentiable manifolds is its impact
on examples and applications of algebraic topology.

As is common practice, the starred sections are those that could be omitted
with minimal impact on other nonstarred material, but the starring shouid
not be taken as a recommendation for that aim. In some cases, the starred
sections make more demands on mathematical maturity than the others and
may contain proofs that are more sketchy than those elsewhere.

This book is not intended as a source book. There is no attempt to present
material in the most general form, unless that entails no expense of time or
clarity. Exceptions are cases, such as the proof of de Rham’s Theorem, where
generality actually improves both efficiency and clarity. Treatment of esoteric
byways is inappropriate in textbooks and introductory courses. Students are
unlikely to retain such material, and less likely to ever need it, if, indeed,
they absorb it in the first place.

As mentioned, some important results are given more than one proof, as
much for pedagogic reasons as for maintaining accessibility of results essential
to algebraic topology for those who choose to skip the geometric treatments
of those results. The Fundamental Theorem of Algebra is given no less than
four topological proofs (in illustration of various results). In places where
choice is necessary between competing approaches to a given topic, preference
has been given to the one that leads to the best understanding and intuition.

In the case of homology theory, I first introduce singular homology and
derive its simpler properties. Then the axioms of Eilenberg, Steenrod, and
Milnor are introduced and used exclusively to derive the computation of
the homology groups of cell complexes. I believe that doing this from the
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axioms, without recourse to singular homology, leads to a better grasp of the
functorial nature of the subject. (It also provides a uniqueness proof gratis.)
This also leads quickly to the major applications of homology theory. After
that point, the difficult and technical parts of showing that singular homology
satisfies the axioms are dealt with.

Cohomology is introduced by first treating differential forms on manifolds,
introducing the de Rham cohomology and then linking it to singular
homology. This leads naturally to singular cohomology. After development
of the simple properties of singular cohomology, de Rham cohomology is
returned to and de Rham’s famous theorem is proved. (This is one place
where treatment of a result in generality, for all differentiable manifolds and
not just compact ones, actually provides a simpler and cleaner approach.)

Appendix B contains brief background material on “naive” set theory.
The other appendices contain ancillary matcrial referred to in the main text,
usually in reference to an inessential matter.

There is much more material in this book than can be covered in a one-year
course. Indeed, if everything is covered, there is enough for a two-year course.
As a suggestion for a one-year course, one could start with Chapter II,
assigning Section 1 as individual reading and then covering Sections 2 through
11. Then pick up Section 14 of Chapter I and continue with Chapter III,
Sections 1 through 8, and possibly Section 9. Then take Chapter IV except
for Section 12 and perhaps omitting some details about CW-complexes. Then
cover Chapter V except for the last three sections. Finally, Chapter VI can
be covered through Section 10. If there is time, coverage of Hopf’s Theorem
in Section 11 of Chapter V is recommended. Alternatively to the coverage
of Chapter VI, one could cover as much of Chapter VII as is possible,
particularly if there is not sufficient time to reach the duality theorems of
Chapter VI.

Although 1 do make occasional historical remarks, I make no attempt at
thoroughness in that direction. An excellent history of the subject can be
found in Dieudonné [1]. That work is, in fact, much more than a history and
deserves to be in every topologist’s library.

Most sections of the book end with a group of problems, which are
exercises for the reader. Some are harder, or require more “maturity,” than
others and those are marked with a . Problems marked with a < are those
whose results are used elsewhere in the main text of the book, explicitly or
implicitly.

Glen E. Bredon
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CHAPTER 1
General Topology

A round man cannot be expected to fit in a
square hole right away. He must have time to
modify his shape.

MARK TwAIN

1. Metric Spaces

We are all familiar with the notion of distance in euclidean n-space: If x and
y are points in R" then
n 12
dist(x,y) =< Y (xi— yi)z> .
i=1
This notion of distance permits the definition of continuity of functions from
one euclidean space to another by the usual e-¢ definition:

f:R"=R¥ is continuous at xeR" if, given € > 0,
36 > 0adist(x,y) <o = dist(f(x), f(y))<e.

Although the spaces of most interest to us in this book are subsets of euclidean
spaces, it is useful to generalize the notion of “space” to get away from such
a hypothesis, because it would be very complicated to try to verify that spaces
we construct are always of this type. In topology, the central notion is that
of continuity. Thus it would usually suffice for us to treat “spaces” for which
we can give a workable definition of continuity.

We could define continuity as above for any “space™ which has a suitable
notion of distance. Such spaces are called “metric spaces.”

1.1. Definition. A merric space is a set X together with a function

dist: X x X >R,
called a metric, such that the following three laws are satisfied:

(1) (positivity) dist(x, y) = 0 with equality <> x = :
(2) (symmetry) dist(x, y) = dist(y, x); and
(3) (triangle inequality) dist(x, z) < dist(x, y) + dist(y, 2).



2 1. General Topology

Tn a metric space X we define the “e-ball,” € > 0, about a point xeX to be

17 B.(x) = {yeX|dist(x,y) <€}.

Also, a subset U < X is said to be “open” if, for each point xeU. there is
an e-ball about x completely contained in U. A subset is said to be “closed”™
if its complement is open. If ye B.(x) and if = € — dist(x, y) then Bs(y) = B(x)
by the triangle inequality. This shows that all e-balls are open sets.

1t turns out that, for metric spaces, continuity can be expressed completely
in terms of open sets:

1.2. Proposition. A function f: X — Y between metric spaces is continuous <>
f YU} is open in X for each open subset U of Y.

Prook. If f is continuous and U < Y is open and f(x)eU then there is an
€ > 0 such that B.(f(x)) = U. By continuity, there is a d > 0 such that f maps
the d-ball about x into B.(f(x)). This means that B,(x) < f ~*(U). This implies
that (U} is open.

Conversely, suppose f(x)=y and that € >0 is given. By hypothesis,
f 7Y (B(y)) is open and contains x. Therefore, by the definition of an open
set, there isa & > O such that Bs(x) = f ™ '(B(y)). It follows that if dist(x, x') < é
then f(x')eB(y), and so dist(f(x), f(x')) <€, proving continuity in the €6
sense. O

The only examples of metric spaces we have discussed are euclidean spaces
and, of course, subsets of those. Even with those, however, there are other
reasonable metrics:

dist,(x,y) = Y. Ix; — yil.
i=1

disty(x,y) = max(|x; — y;l).

It is not hard to verify, from the following proposition, that these three
metrics give the same open sets, and so behave identically with respect to
continuity (for maps into or out of them).

1.3. Proposition. If dist, and dist, are metrics on the same set X which satisfy
the hypothesis that for any point xe X and € >0 there is a > 0 such that

dist,;(x,y)<d = dist,(x,y) <e,
and

dist,(x,¥) < = dist;{x,y)<e,

then these metrics define the same open sets in X.

Proor. The proof is an easy exercise in the definition of open sets and is
left to the reader. J
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PROBLEMS

1. Consider the set X of all continuous real valued functions on [0, 1]. Show that

1
dist(f.g9) = f [f{x) — g(x)] dx

JO
defines a metric on X. Is this still the case if continuity is weakened to integrability?

2.-¢-1f X is a metric space and x, is a given point in X. show that the function
f:X >R given by f(x)=dist(x, x,) is continuous.

3.0-1f 4 is a subset of a metric space X then define a real valued function d on X
by d(x) = dist(x, A) = inf{dist(x, y}] ye A}. Show that d is continuous. (Hint: Use the
triangle inequality to show that |d(x,) — d(x,)] < dist(x,, x;).)

2. Topological Spaces

Although most of the spaces that will interest us in this book are metric
spaces, or can be given the structure of metric spaces, we will usually only
care about continuity of mappings and not the metrics themselves. Since
continuity can be expressed in terms of open sets alone, and since some
constructions of spaces of interest to us do not easily yield to construction
of metrics on them, it is very useful to discard the idea of metrics and to
abstract the basic properties of open sets needed to talk about continuity.
This leads us to the notion of a general “topological space.”

2.1. Definition. A ropological space is a set X together with a collection of
subsets of X called “open” sets such that;

(1) the intersection of two open sets is open;
(2) the union of any collection of open sets is open; and
(3) the empty set ¥ and whole space X are open.

Additionally, a subset C < X is called “closed” if its complement X — C is
open.

Topological spaces are much more general than metric spaces and the
range of difference between them and metric spaces is much wider than that
between metric spaces and subspaces of euclidean space. For example. it is
possible to talk about convergence of sequences of points in metric spaces
with little difference from sequences of real numbers. Continuity of functions
can be described in terms of convergence of sequences in metric spaces. One
can also talk about convergence of sequences in general topological spaces
but that no longer is adequate to describe continuity (as we shall see later).
Thus it is necessary to excrcise care in developing the theory of general
topological spaces. We now begin that development, starting with some
further basic definitions.
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2.2. Definition. If X and Y are topological spaces and f: X — Y is a function,
then f is said to be continuous if f~1(U) is open for each open set U < Y.
A map is a continuous function.

Since closed sets are just the complements of open sets and since inverse
images preserve complements (i.e.. f ~}(Y — B)= X — f~'(B)), it follows that
a function f:X — Y is continuous<> f ~'(F) is closed for each closed set
FcY.

2.3. Definition. If X is a topological space and xe X then a set N is called
a neighborhood of x in X if there is an open set U < N with xeU.

Note that a neighborhood is not necessarily an open set, and, even though
onc usually thinks of a neighborhood as “small,” it need not be: the entire
space X is a neighborhood of each of its points.

Note that the intersection of any two neighborhoods of x in X is a
neighborhood of x. which follows from the axiom that the intersection of
two open sets is open.

The intuitive notion of “smallness™ of a neighborhood is given by the
concept of a neighborhood basis at a point:

2.4. Definition. If X is a topological space and xe X then a collection B, of
subsets of X containing x is called a neighborhood basis at x in X if each
neighborhood of x in X contains some element of B, and each element of B,
1s a neighborhood of x.

Neighborhood bases are sometimes convenient in proving functions to be
continuous:

2.5. Definition. A function f:X — Y between topological spaces is said to
be continuous at x, where xe X, if, given any neighborhood N of f(x)in Y,
there is a neighborhood M of x in X such that f(M)< N.

Since f(f YN))< N, this is the same as saying that f Y(N) is a
neighborhood of x, for each neighborhood N of f(x). Clearly. this need only
be checked for N belonging to some neighborhood basis at f{x).

2.6. Proposition. A4 function f:X —Y between topological spaces s
continuous <> it is continuous at each point xeX.

PrOOF. Suppose that f is continuous, i.e., that f ~ '(U) is open for each open
UcY. Let N be a neighborhood of f(x)in Y and let U be an open set such
that f(xjeU < N as guaranteed by the definition of neighborhood. Then
xef Y U)c f74N) and f~YU) is open. It follows that f '(N) is a
neighborhood of x. Thus f is continuous at x.
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Conversely. suppose that f is continuous at each point and let U < Y be
an open set. For any xe f~'(U), f~ (U} is then a neighborhood of x. Thus
there exists an open set V, in X with xeV, < f~(U). Hence f~'(U) is the
union of the sets V, for x ranging over f~'(U). Since the union of any
collection of open sets is open, it follows that f~}(U) is open. But U was an
arbitrary open set in Y and, consequently. f is continuous. 0

2.7. Definition. A function f:X — Y between topological spaces is called a
homeomorphism if ™'Y > X exists (i.e, f is one-one and onto) and
both f and f~' are continuous. The notation X > Y means that X is
homeomorphic to Y.

Two topological spaces are, then, homeomorphic if there is a one-one
correspondence between them as sets which also makes the open sets
correspond. Homeomorphic spaces are considered as essentially the same.
One of the main problems in topology is to find methods of deciding when
two spaces are homeomorphic or not.

To describe a topological space it is not necessary to describe completely
the open sets. This can often be done more simply using the notion of a
“basis” for the topology:

2.8. Definition. If X is a topological space and B is a collection of subsets
of X, then B is called a basis for the topology of X if the open sets are
precisely the unions of members of B. (In particular, the members of B are
open.) A collection S of subsets of X is called a subbasis for the topology of
X if the set B of finite intersections of members of S is a basis.

Note that any collection S of subsets of any set X is a subbasis for some
topology on X, namely, the topology for which the open sets are the arbitrary
unions of the finite intersections of members of S. (The empty set and whole
set X are taken care of by the convention that an intersection of an empty
collection of sets is the whole set and the union of an empty collection of
sets is the empty set.) Thus, to define a topology. it suffices to specify some
collection of sets as a subbasis. The resulting topology is called the topology
“generated” by this subbasis.

In a metric space the collection of e-balls, for all € >0, is a basis, So is
the collection of e-balls fore= 1.1, 1 . .

3
Here are some examples of topological spaces:

I. (Trivial topology.) Any set X with only the empty set and the whole set
X as open.

2. (Discrete topology.) Any set X with all subsets being open.

3. Any set X with open sets being those subsets of X whose complements
are finite, together with the empty set. (That is, the closed sets are finite
sets and X itself)
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4, X =wu{w! with the open sets being all subsets of w together with
complements of finite scts. (Here, w denotes the set of natural numbers.)

5. Let X be any partially ordered set. For x€X consider the one-sided
intervals {feX|x <) and {feX|a> f}. The ~order topology™ on X is
the topology generated by these intervals. The “strong order topology™ is
the topology generated by these intervals together with the complements
of finite sets.

6. Let X =1 x I where I is the unit interval [0, 1]. Give this the “dictionary
ordering,” i.e., (x,)) < (s,1)<>either x <s or (x=s and y <1). Let X have
the order topology for this ordering.

7. Let X be the real line but with the topology generated by the “half open
intervals” [x,y). This is called the “half open interval topology.”

8. Let X =Qu{Q} be the set of ordinal numbers up to and including the
least uncountable ordinal €; see Theorem B.28. Give it the order topology.

2.9. Definition. A topological space is said to be first countable if each point
has a countable neighborhood basis.

2.10. Definition. A topological space is said to be second countable if its
topology has a countable basis.

Note that all metric spaces are first countable. Some metric spaces are
not second countable. e.g.. the space consisting of any uncountable set with
the metric dist{x, vy} = 1 if x # y, and dist(x, x) = 0 (which yields the discrete
topology).

Euclidean spaces are second countable since the e-balls, with € rational,
about the points with all rational coordinates, is easily seen to be a basis.

2.11. Definition. A sequence f,. f>,... of functions from a topological space
X to a metric space Y is said to converge uniformly to a function f: X —Y
if. for each € > 0, there is a number n such that i > n => dist(f(x), f(x)) < € for
all xe X.

2.12. Theorem. If a sequence f,f,..... of continuous functions from a
topological space X to a metric space Y converges uniformly to a function
X > Y. then f is continuous.
PrOOF. Given € > 0, let n, be such that

n>n, = dist(f(x), fJx)) <e€3 for all xeX.

Given a point xg, the continuity of f,, implies that there is a neighborhood
N of xq such that xe N = dist(f,(x), f,,,(X0)) < €/3. Thus, for any xe N we have

dist( f(x), f{x0)) < dist(f(x), fodX)) 4 dist(fo(x) fr,dX0)) + dist(fo,(Xo) f(X0))
<el3+e3+el=¢ O



