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Preface

We are drowning in infomdtion and starving for knowledge.

—Rutherford D. Roger

The field of Statistics is constantly challenged by the problems that science
and industry brings to its door. In the early days, these problems often came
from agricultural and industrial experiments and were relatively small in
scope. With the advent of computers and the information age, statistical
problems have exploded both in size and complexity. Challenges in the
areas of data storage, organization and searching have led to the new field
of “data mining”; statistical and computational problems in biology and
medicine have created “bioinformatics.” Vast amounts of data are being
generated in many fields, and the statistician’s job is to make sense of it
all: to extract important patterns and trends, and understand “what the
data says.” We call this learning from data.

The challenges in learning from data have led to a revolution in the sta-
tistical sciences. Since computation plays such a key role, it is not surprising
that much of this new development has been done by researchers in other
fields such as computer science and engineering.

The learning problems that we consider can be roughly categorized as
either supervised or unsupervised. In supervised learning, the goal is to pre-
dict the value of an outcome measure based on a number of input measures;
in unsupervised learning, there is no outcome measure, and the goal is to
describe the associations and patterns among a set of input measures.



viii Preface

This book is our attempt to bring together many of the important new
ideas in learning, and explain them in a statistical framework. While some
mathematical details are needed, we emphasize the methods and their con-
ceptual underpinnings rather than their theoretical properties. As a result,
we hope that this book will appeal not just to statisticians but also to
researchers and practitioners in a wide variety of fields.

Just as we have learned a great deal from researchers outside of the field
of statistics, our statistical viewpoint may help others to better understand
different aspects of learning:

There is no true interpretation of anything; interpretation is a
vehicle in the service of human comprehension. The value of
interpretation is in enabling others to fruitfully think about an
idea.

—Andreas Buja,

We would like to acknowledge the contribution of many people to the
conception and completion of this book. David Andrews, Leo Breiman,
Andreas Buja, John Chambers, Bradley Efron, Geoffrey Hinton, Werner
Stuetzle, and John Tukey have greatly influenced our careers. Balasub-
ramanian Narasimhan gave us advice and help on many computational
problems, and maintained an excellent computing environment. Shin-Ho
Bang helped in the production of a number of the figures. Lee Wilkinson
gave valuable tips on color production. Ilana Belitskaya, Eva Cantoni, Maya
Gupta, Michael Jordan, Shanti Gopatam, Radford Neal, Jorge Picazo, Bog-
dan Popescu, Olivier Renaud, Saharon Rosset, John Storey, Ji Zhu, Mu
Zhu, two reviewers and many students read parts of the manuscript and
offered helpful suggestions. John Kimmel was supportive, patient and help-
ful at every phase; MaryAnn Brickner and Frank Ganz headed a superb
production team at Springer. Trevor Hastie would like to thank the statis-
tics department at the University of Cape Town for their hospitality during
the final stages of this book. Finally, we would like to thank our families
and our parents for their love and support.

Trevor Hastie

Robert Tibshirani
Jerome Friedman

Stanford, California
May 2001

The quiet statisticians have changed our world; not by discov-
ering new facts or technical developments, but by changing the
ways that we reason, experiment and form our opinions ....

—Tan Hacking
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1

Intfoduction

Statistical learning plays a key role in many areas of science, finance and
industry. Here are some examples of learning problems:

e Predict whether a patient, hospitalized due to a heart attack, will
have a second heart attack. The prediction is to be based on demo-
graphic, diet and clinical measurements for that patient.

e Predict the price of a stock in 6 months from now, on the basis of
company performance measures and economic data.

o Identify the numbers in a handwritten ZIP code, from a digitized
image.

e Estimate the amount of glucose in the blood of a diabetic person,
from the infrared absorption spectrum of that person’s blood.

o Identify the risk factors for prostrate cancer, based on clinical and
demographic variables.

The science of learning plays a key role in the fields of statistics, data
mining and artificial intelligence, intersecting with areas of engineering and
other disciplines.

This book is about learning from data. In a typical scenario, we have an
outcome measurement, usually quantitative (like a stock price) or categor-
ical (like heart attack/no heart attack), that we wish to predict based on
a set of features (like diet and clinical measurements). We have a training
set of data, in which we observe the outcome and feature measurements



2 1. Introduction

TABLE 1.1. Average percentage of words or characters in an email message
equal to the indicated word or character. We have chosen the words and characters
showing the largest difference between spam and email.

george you your hp free hpl ! our re edu remove

spam 0.00 2.26 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
email 1.27 1.27 0.44 0.90 0.07 0.43 0.11 0.18 0.42 0.29 0.01

for a set of objects (such as people). Using this data we build a predic-
tion model, or learner, which will enable us to predict the outcome for
new unseen objects. A good learner is one that accurately predicts such an
outcome.

The examples above describe what is called the supervised learning prob-
lem. It is called “supervised” because of the presence of the outcome vari-
able to guide the learning process. In the unsupervised learning problem,
we observe only the features and have no measurements of the outcome.
Our task is rather to describe how the data are organized or clustered. We
devote most of this book to supervised learning; the unsupervised problem
is less developed in the literature, and is the focus of the last chapter.

Here are some examples of real learning problems that are discussed in
this book.

Ezxample 1: Email Spam

The data for this example consists of information from 4601 email messages,
in a study to try to predict whether the email was junk email, or “spam.”
The objective was to design an automatic spam detector that could filter
out spam before clogging the users’ mailboxes. For 3601 email messages, the
true outcome (email type) email or spam is available, along with the relative
frequencies of 57 of the most commonly occurring words and punctuation
marks in the email message. This is a supervised learning problem, with
the outcome the class variable email/spam. It is also called a classification
problem.

Table 1.1 lists the words and characters showing the largest average
difference between spam and email.

Our learning method has to decide which features to use and how: for
example, we might use a rule like

if (%george < 0.6) & (%you > 1.5) then spam
else email.

Another form of rule would be:

if (0.2 - %you — 0.3 -Y%george) >0 then spam
else email.



