éNZ BOOKS fé & ,E Hﬁ # ,E -

BESNRFNZA

(ZR3IhR)

ERIC S. ROBERTS
"z;!‘ .il;

A Library-Based Introduction to Cofff SRl AU R

#r 18 18 X #

Ml T AR i

China Machine Press

X

(2]
AT
[}
o
o)
o
9]
R
—
W

SHRENZ

BB B

1

e

English reprint edition copyright © 2004 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: The Art and Science of C: A Library-Based Introduction to
Computer Science (ISBN: 0-201-54322-2) by Eric S. Roberts, Copyright © 1995.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
Addison-Wesley Publishing Company, Inc.

l;or sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong
Kong SAR and Macau SAR).

AASIESCREEN IR i Pearson Education Asia Ltd 3AUHLAR Tk U MRALIR K AR . R2HK
ABWFAT, SHRLMERAFREHSPDREBHNE.

BRI AREIESEN (FEEPRES. RIMENTEREMPESEBEK) 4
Ei7.
A 55l # Pearson Education (34 8H HAREE) BB IIRE, BREEFSE
W,

MREUTE , BRLR.

EPREPEICS: EFE: 01-2004-1204
BHEERE (CIP) ¥ig

CIETMRHEMZIAR () / (%) BIAZK (Roberts, E. S.) ¥, —3L30: AR TkH
Mi#k. 2004.4

(2 BRRREE)

454 3C: The Art and Science of C: A Library-Based Introduction to Computer Science

ISBN 7-111-13991-7

[.C- N.% - MCEE-BFEIF-%3x IV.TP3I2
A B B CIPRR B (2004) 50097718

BUME ol HHAR#E (e dismis 5 FE k#4225 BBBCSRRD 100037)
RIERER: RiRE

LR AL EPLENRYENR - FEBBIRRGR R
2004 4 4 A5E 1 KRS 1 AREDRI

787mm x 1092mm 1/16 - 4613k

El%: 0001-3 000M}

Z#r: 60.005¢

A, mAERR. K. BT, BiAdEGEiEk
ek (010) 68326294

AR A S

LU, FURRKAOFHERWRE SRR RE, E0 5 ERERBENE
YU T MRS MIERXHRIAYE, EXEERBBEAREIATZENLRE
. MGG, Ak emER D, RO SEEFRECMEFRES . IFEN RS
RIVF 2 R AL - R0 B b BN BC S M B AT 2%, B AR IS R B/, IR THIR
HI70RE, B T ¥ RMOEE, BEEEARME, XAARLEME, BNEARSHE AR
L i R

ﬁﬁ,E%ﬁ%ﬁ%kﬁ%ﬁﬁF,ﬁ@%ﬂ%ﬂ?&ﬁ@ﬂﬁ,ﬁﬁﬂkfmﬁﬁﬁé
Y. XXM U BALBEERMURFMERLIE, BEKK: WE VMR ERT SR LR
BHEIRE., AREGEBERRRFMEE. MEARRVHBIRT, 2RSS SERELT
TR R RO U+ B M 2 BB A I 2 BB S 240, B, B0 #IEMERLT
BHLEM M R ANEE F VR BERROMEDER . bE5HRE. B AENH
R—mRFRLM 28 .

HLARC Tl R AL S B2 B S0 B ATRR A SRR RS “HREABEIS . B 19984 1 44
AR TR E SR Tk, BIRERMBEEM L. 23 LENRME Y, Ki5
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan Kaufmann i35 35 4, 1R 2\ B TR
HRIATEXFR,. NENBA MBS R 2okt 81 % 1 Tanenbaum , Stroustrup, Kernighan, Jim
GrayF KA RO —RE PR, L0 “THREAUBHE AR SRR, (5223, BRRE
o KEEOOUCEMEE, Wbkl TX MBS0 M %Y.

CURHLBHE A" B TR R TN SMEEHM DR, NS 5 AR T by
MLERIR S, EARESF I AR T MR R B0 T4 S RO Al Y 061k S S b)
Hfel, AT THARBOUPERMERF. LA, “UEALEHENS" CHER T 54 &R,
XA IRAERA PR T RIFRI DR, BT B 2k R H LR M RIS 24088, bt — b i
)TERRAT T T RcHIERL.

& # PHR IR W) 5 5o BB SRR WAL, B8 Rk SN BHL B 0 T2 R
HEA—AFIOBE. b, EEATHMASESMA N, £ “LTHE WAy F
HIR ZA RGO BB B U BHLRHEA " Z2ob, A ENRR A B, W 8 A TT R
“BRIERBET 5 R, SIEEAEBGHEEMDE “Schaum’s Outlines” ROV “2%EL
%#H%%%ﬁﬁo%Tﬁﬁﬁiﬁ&#%ﬁﬁﬁ,ﬁﬁ&ﬁTEﬁﬂﬁ%ﬁﬂ%%ﬁ%%»@
OB TAERRERE. R WA, HBFHEAS. AR, LRACEA%.
HIRKSE . WK, hEFHEAS . ARRT LAY, W%l A%, AR, o
ﬁ?ﬁfki‘kﬁM%k%‘¢Mk%‘%ﬁ$ﬂlk%\ﬂMk%‘ﬁ%£¥%*@@

KIEBLREMENEF OFEBENEARZNRIAETEILNENSENE LS EA4R “F
KIEFERNS”, ARMNBEEEE LA AR K E.

X ZEMNAS R B F SR N MR EM SR, SEANEKNITEILREXE LD
FEBEEITEN. XhiFL8MBYTAM. L T., Stanford, U.C. Berkeley, C. M. U. Z4i+ 57 & i
RERRM. FMUMETRFIZ. BBEH. BRERK. HEIWGERSH. SIEE. Kz
B, kTR BEE. BE5M%. SEEFSENARTENLS LERFINE0IRE,
MAZRAME—ANHAEBESRHEZTE. ANHS=1T4TH1%. ANCEAHENILE
PR . fEX B BB MM AT A ERIESI 2 T, ik BB LR 220 o i rh fy
MA=E.

BEIOEE . SUHEH. —KNIFE. PHROEK. SO0, XSREFERITNE
BHTREMRIE, EROVEFHRRRERE, TRBNELELERITEEX 2R BHGE
EWB. BHHRRRBEANN GRS IR A, 8 FWGULZIB AR 010 TR 5
BIURATIRE, RINMWBESENOT:

HLFlbfE: hzedu@hzbook.com
BEARHIE: (010) 68995264

BeAMAE: ERHERE & 5 S
HREL ZahG: 100037

FREFERS

(H R E IR)

& A I W YA iy 1 £ £
x &3 e # IsEF E LR = i &
KR 5P FIHE F)7 % FRF -
BR 4% % i 7 ¢ M Ak k& B B 18 %
B A B iz R &2 FL 5 %
SN #REE 718 & LN JE# g
EESL &£ M A2 fa A2 B} 3%
HA A= EEE b 3

In loving memory of Grace E. Bloom
(1924-1994) for helping me appreciate
‘the value of ideas and the importance

of writing clearly about them.

About the Author

I first began teaching introductory computer science
more than 20 years ago while I was still a student at
Harvard. Since receiving my Ph.D. in 1980, I have
taught computer science at Harvard, Wellesley, and
Stanford, where I am Associate Chair of the
Computer Science Department. In that capacity, I
am responsible for the undergraduate program in
computer science. Although I have taught advanced
courses in computer science and have also worked
in the research industry, my greatest joy comes from
opening up the enormous power of computers to
students who are just beginning to learn about them.
In their excitement, my own love for computer sci-
ence is constantly renewed.

In addition to my teaching at Stanford, I have
served since 1990 as the president of Computer
Professionals for Social Responsibility, a public-
interest association of computer professionals with
2000 members in 22 chapters throughout the United
States. Computers affect our society in many differ-
ent ways. Just as it is important to learn about the
technology, it is critical that we also take the respon-
sibility to ensure that computers are used for the ben-
efit of all. If you have suggestions as to how I might
make the presentation more clear, or you encounter
errors in this text, please let me know. You can reach
me by electronic mail at ericr@aw.com.

Eric S. Roberts
Department of Computer Science
Stanford University

To the Student

Welcome! By picking up this book, you have taken a step into the world of computer
science—a field of study that has grown from almost nothing half a century ago to
become one of the most vibrant and active disciplines of our time.

Over that time, the computer has opened up extraordinary possibilities in
almost every area of human endeavor. Business leaders today are able to manage
global enterprises on an unprecedented scale because computers enable them to
transfer information anywhere in a fraction of a second. Scientists can now solve
problems that were beyond their reach until the computer made the necessary cal-
culations possible. Filmmakers use computers to generate dramatic visual effects
that are impossible to achieve without them. Doctors can determine much more
accurately what is going on inside a patient because computers have enabled a
massive transformation in the practice of medicine.

Computers are a profoundly empowering technology. The advances we have seen
up to now are small compared to what we will see in the next century. Computers
will play a major role in shaping that century, just as they have the last 50 years.
Those of you who are students today will soon inherit the responsibility of guiding
that progress. As you do so, knowing how to use computers can only help.

Like most skills that are worth knowing, learning how computers work and how
to control their enormous power takes time. You will not understand it all at once.
But you must start somewhere. Twenty-five centuries ago, the Chinese philoso-
pher Lao-tzu observed that the longest journey begins with a single step. This
book can be your beginning.

For many of you, however, the first step can be the hardest to take. Many stu-
dents find computers overwhelming and imagine that computer science is beyond
their reach. Learning the basics of programming, however, does not require
advanced mathematics or a detailed understanding of electronics. What matters in
programming is whether you can progress from the statement of a problem to its
solution. To do so, you must be able to think logically. You must have the neces-
sary discipline to express your logic in a form that the computer can understand.
Perhaps most importantly, you must be able to see the task through to its comple-
tion without getting discouraged by difficulties and setbacks. If you stick with the
process, you will discover that reaching the solution is so exhilarating that it more
than makes up for any frustrations you encounter along the way.

This book is designed to teach you the fundamentals of programming and the
basics of C, which is the dominant programming language in the computing indus-
try today. It treats the whys of programming as well as the hows, to give you a feel
for the programming process as a whole. It also includes several features that will
help you focus on the essential points and avoid errors that slow you down. The
next few pages summarize these features and explain how to use this book effec-
tively as you begin your journey into the exciting world of computer science.

USING The Art and Science of C

¢

For Chapter Review

i
Each chapter includes easily accessible material to guide your study
and facilitate review of the central topics.

CHAPTER 4

Statement Forms

The statements was interesting but tough.
. . . " — Mork Twair, Adventures of Huckleberry Finn, 1884
The list of objectives
previews the key topics
covered by the chapter. 0biectives

Because each 0b3ect1 ve ® Tounderstand the relationship between statements and axpressions.

identifies a concrete skill, To recognize that the equal sign used for assignment s treated as o binory operator in (.
To understond that stotements con be collected into blocks.

To recognize that control statements foll into two classes: conditional end terative,

T loarn how 1o manipulote Boolsen dota and to appreciate its importance.

To increase your femibiority with the relational operators: =, 1<, <, <=, >, and »=.

To wnderstend the behavior of the <&, 11, and 1 operators.

To master the detalks of the 3£, switch, while, and For stalements.

the chapter objectives

help you to assess
your mastery of the
essential material.

Xi

To make the best possible use of this textbook for learning the C language,

be sure to take advantage of the tools it provides.

Summary

In Chapter 3, you looked at the process of progr ing from a holi

tive that emphasized problem solving. Along the way, you learned aboul several
control statements in an informal way. In this chapter, you were able to investigate
how those statements work in more detail. You were also introduced to a new type
of data called Boolean data. Although this data type contains only two values—

TRUE

and FALSE—being able to use Boolean data effectively is extremely impor-

tant to successful programming and is well worth a little extra practice.

This chapter also introduced several new operators, and at this point it is helpful
to review the precedence relationships for all the operators you have seen so far.
That information is summarized in Table 4-1 the operators are listed from highest
to lowest precedence.

The important points introduced in this chapter include:

Simple statements consist of an expression followed by a semicolon.

The = used to specify assignment is an operator in C. Assignments are there-

fore legal expressions, which makes it possible to write embedded and multi-

Plt’ assignments.

Individual statements can be collected into compound statements, more

commonly called blocks.

Control statements fall into two classes: conditional and iterative.

The genlib library defines a data type called bool that is used to represent

Boolean data. The type bool has only two values: TRUE and FALSE.

You can generate Boolean values using the relational operators (<, <=, >,
, and !=) and combine them using the logical operators (&%, |1, and

1).

The logical operators && and | | are evaluated in left-to-right order in such a

way that the evaluation stops as soon as the program can determine the

result. This behavior is called short-circuit evaluation.

Operator Associativity

&&
Il

L

unary - ‘- - ! (rype cast) right-to-left

% left-to-right
left-to-right

- left-to-right

! left-to-right
left-to-right

left-to-right

right-to-left

op= . right-to-left

Summary 131

TABLE 4-1

Precedence table for

operators used through
Chapter 4

The Summary describes,
in more detail, what you
should have learned in
connection with the

Objectives

XH

Learning to Program

Programming is both a science and an art. Learning to program well

requires much more than memorizing a set of rules. You must learn through

experience and by reading other programs. This text includes several

features to aid in this process.

The text includes a

large number of Program
examples that illustrate how
individual C complete are used
to create complete programs.
These examples also serve as
models for your own programs;
_ in many cases, you can solve a
new programming problem by
making simple modifications to
a program from the text.

The final character in the string is a special character called newline, indicated by
the sequence \n. When the printf function reaches the period at the end of the
sentence, the cursor is sitting at the end of the text, just after the period. If you
wanted to extend this program so that it wrote out more messages, you would
probably want to start each new message on a new screen line. The newline char-
acter, defined for all modern computer systems, makes this possible. When the
printf function processes the newline character, the cursor on the screen moves
to the beginning of the next line, just as if you hit the Return key on the keyboard
(this key is labeled Enter on some computers). In C, programs must include the
newline character to mark the end of each screen line, or all the output will run
together without any line breaks.

2.2 A program to add two numbers

To get a better picture of how a C program works, you need to consider a slightly
more sophisticated example. The program add2.c shown in Figure 2-2 asks the
user to enter two numbers, adds those numbers together, and then displays the
sum.,

The add2.c program incorporates several new programming concepts that were
not part of hello.c. First, add2.c uses a new library called simpio, simplified

e

/*

*

*

-

*

*/

File: add2.c
This program reads in two numbers, adds them together,
and prints their sum.

#include <stdio.h>
#include "genlib.h"
#include "simpio.h"

main()

{

int nl, n2, total;

printf("This program adds two numbers.\n");
printf(*1st number? ");

nl = GetInteger();

printf("2nd number? ");

n2 = GetInteger();

total = nl + n2;

printf("The total is %d.\n", total);

The print f function can display any number of data values as part of the output.
For each integer value you want to appear as part of the output, you need to
include the code #d in the string that is used as the first argument in the print f
call. The actual values to be displayed are given as additional arguments to
printf, listed in the order in which they should appear. For example, if you
changed the last line of the add2 . c program to

printf(*%d + %d = %d\n", nl, n2, total);

the value of n1 would be substituted in place of the first %d, the value of n2 would
appear in place of the second %d, and the value of total would appear in place of
the third #d. The final image on the computer screen would be

This program adds two numbers.
1st number? 2J

2nd number? 3J

2+3=5

The print £ function is discussed in more detail in Chapter 3.

Cascading i £ statements

The syntax box on the right illustrates an important special case of the if state-
ment that is useful for applications in which the number of possible cases is larger
than two. The characteristic form is that the

else part of a condition consists of yet

another test to check for an alternative con- 5 I ¢a if statements
dition. Such statements are called cascad- if (condition;) {

ing if statements and may involve any statements,

number of else if lines. For example, the } else if (condition,) | any
program signtest .c in Figure 4-3 uses the statements, number

C ding if to report whether a } else if (condition;) | may
number is positive, zero, or negative. Note Statements; appear
that there is no need to check explicitly for } else {

the n < 0 condition. If the program reaches starementsnoe

that last else clause, there is no other possi-)
bility, since the earlier tests have eliminated
the positive and zero cases.

In many situations, the process of choos-

where:
each condition, is a Boolean expression
each statements; is a block of statements to be executed

ing between a set of independent cases can if condition, is TRUE
be handled more efficiently using the statements,,,,, is the block of statements to be executed
switch statement, which is described in a if every condition, is FALSE

separate section later in this chapter.

The 2: operator (optional)

The C programming language provides another, more compact mechanism for
onditional e

Syntax boxes summarize key rules of C syntax, for an at-a-glance
: review of key programming concepts.

X

Xiv

To Avoid Errors

All programmers, even the best ones, make mistakes. Finding these

mistakes, or bugs, in your programs is a critically important skill. The following

features will help you to build this skill.

ITALIEEEEY bolance?.c (buggy version)
"

* File:

o

balance2.c

* This file contains a buggy second attempt at a program to
* balance a checkbook.
*/

#include <s
#includ

double entry, balance;

printf(*This program helps you balance your checkbook.\n
iter each check and deposit during the month.\n
indicate a check, use a minus sign.\n");

gnal the end of the month with a 0 value.\n");
rintf ("Enter the initial balance: *);
balance = GetReal();

while (TRUE) ({

intf("Enter check (-) or deposit:

)iz

= GetReal();
f 1itry == 0) break:
be e += entry;
f (balance < 0) {
printf("This check bounces. $10 fee deducted.\n

balance -=

10;

printf("Current balance = %g\n", balance);

printf("Final balance = %g\n", balance);

COMMON
PITFALLS

When writing programs
that fest for equolity, be
sure to use the == oper-
ator and not the single =
operator, which signifies
assignment. This error is
exiremely common and
con lead to bugs that are
very difficult to find,
because the compiler
cannot detect the error.

Common Pitfalls provide handy
reminders about mistakes all
beginning programmers are
likely to make, and how to avoid
them. Faulty lines of code are
highlighted with a bug image
and annotated in color.

To help you learn to recognize and
correct bugs, this text includes several
buggy programs that illustrate typical
errors. To make sure you do not use
these programs as models, such
incorrect programs are marked with

a superimposed image of a bug.

&)
i I

)i

Equal
Not equal

When you write programs that test for equality, be very careful to use the == oper-
ator, which is composed of two equal signs. A single equal sign is the assignment
operator. Since the double equal sign violates conventional mathematical usage,
replacing it with a single equal sign is a particularly common mistake. This mis-
take can also be very difficult to track down because the C compiler does not usu-
ally catch it as an error. A single equal sign usually turns the expression into an
embedded assignment, which is perfectly legal in C; it just isn’t at all what you
want. For example, if you wanted to test whether the value of the variable x were
equal to 0 and wrote the following conditional expression

if (x“ﬁ#) & o

This is incorrect.

the results would be confusing. This statement would not check to see if x were
equal to 0. It would instead insist on this condition by assigning the value 0 to x,
which C would then interpret (for reasons too arcane to describe at this point) as
indicating a test result of FALSE. The correct test to determine whether the value of
the variable xis equal to 0 is
if (x == 0) . [~

Be careful to avoid this error. A little extra care in entering your program can save
a lot of debugginyg time later on

After the Chapter

Learning to program requires considerable practice. To make sure that

~

Xv

you get the necessary experience, each chapter includes an extensive set of

exercises and questions that test your mastery of the material.

REVIEW QUESTIONS

. Is the coastruction
17;
a legal statement in C? Is it useful?

. Describe the cffect of the following statement, assuming that i, j, and k are
declared as integer variables:

1= =41 * (k =16);

. What single statement would you write to set both x and y (which you may
assume are declared to be type double) to 1.0?

4. What is meant by the term associativity? What is unusual about the associativ

A= - SN B

ity of assignment with respect to that of the other operators you have seen?

- What is a block? What important fact about blocks is conveyed by the term
compound st which is her name for the same concept?

. What are the two classes of control statements?
. What does it mean to say that two control statements are nested?
. What are the two values of the data type bool?

. What happens when a programmer tries to use the mathe
equality in a conditional expression?

10. What restriction does C place on the types of values that ca

the relational operators?

Each chapter concludes with a wealth of
Review Questions, which require brief
answers 10 chapter content questions, code
adaptions, or debugging exercises.

PROGRAMMING EXERCISES

. How would you write a Boolean expression 1o test whet

1. Although this chapter has focused on mathematical algorithms. the Greeks were

Programming Exercises call for you

to try your hand at more extensive
programming projects.

fascinated with algorithms of other kinds as well. In Greek mythology, for
example, Theseus of Athens escapes from the Minotaur’s labyrinth by taking in
a ball of string, unwinding it as he goes along, and then following the path of

_string back to the exit. Theseus's strategy represents an algorithm for escaping

from a maze. but it is not the only algorithm he couid have used to solve this
problem. For example, if a maze has no internal loops, you can always escape
by following the right-hand rule, in which you always keep your right hand
against the wall. This approach may lead you to backtrack from time to time,
but it does ensure that you will eventually find the opening to the outside.

For example, imagine that Theseus is in the maze shown below at the
position marked by the Greek letter theta (©):

B

To the Instructor

In 1991-92, Stanford decided to restructure its introductory computer science cur-
riculum to use ANSI C instead of Pascal. We chose to adopt ANSI C in our intro-
ductory courses for the following reasons:

Students demanded a more practical language. Future employers want stu-
dents to have more direct experience with the tools industry uses, which today
are principally C and C++. With few employment opportunities listed for
Pascal programmers in the newspaper employment section, our students
began to question the relevance of their education.

Our Pascal-based curriculum taught students to program in a language that
they would never again use. We discovered that many of those students,
when they abandoned Pascal for more modern languages, often forgot every-
thing they had learned about programming style and the discipline of soft-
ware engineering. Having now taught these skills in the context of a
language that the students continue to use, we have found that they end up
writing much better programs.

Many of our advanced computer science courses, particularly in the systems
area, require students to program in C. Working with C from the beginning
gives students much more experience by the time they reach the advanced
courses.

Learning C early paves the way to learning C++ and the object-oriented par-
adigm. Because our students have a strong background in C programming
after their first year of study, we have been able to offer our course on
object-oriented system design much earlier in the curriculum.

C makes it possible to cover several important topics, such as modular devel-
opment and abstract data types, that are hard to teach in a Pascal environment.
In the last five years, C has made significant headway toward replacing
Fortran as the lingua franca of programming for the engineering sciences.

Given our experience over the last three years,] am convinced that the choice
was a good one and that our program is stronger because of the change.

At the same time, it is important to recognize that teaching C in the first pro-
gramming course is not always easy. C was designed for programmers, not intro-
ductory students. Many of its features make sense only when understood in terms
of a larger conceptual framework that new students do not recognize. In many
respects, C is a complex language. To teach it at the introductory level, we must
find a way to control its complexity.

The library-based approach

One of the central goals of this text is to enable teachers to manage C’s inherent
complexity. Managing complexity, however, is precisely what we do as program-
mers. When we are faced with a problem that is too complex for immediate solu-
tion, we divide it into smaller pieces and consider each one independently.
Moreaover, when the complexity of one of those pieces crosses a certain threshold,
it makes sense to isolate that complexity by defining a separate abstraction that has
a simple interface. The interface protects clients from the underlying details of the
abstraction, thereby simplifying the conceptual structure.

The same approach works for teaching programming. To make the material
easier for students to learn, this text adopts a library-based approach that empha-
sizes the principle of abstraction. The essential character of that approach is
reflected in the following two features that set this book apart from other introduc-
tory texts:

1. Libraries and modular development—essential concepts in modern program-
ming—are covered in considerable detail early in the presentation. Part II
focuses entirely on the topics of libraries, interfaces, abstractions, and modu-
lar development. Students learn how to use these techniques effectively
before they learn about arrays. .

2. The text demonstrates the power of libraries by using them. It is one thing to
tell students that libraries make it possible to hide complexity. It is quite
another to demonstrate that concept. This text introduces several new libraries
that hide details from the students until they are ready to assimilate them. The
librariés give students the power to write useful programs that they could not
develop on their own. Later chapters reveal the implementation of those
libraries, thereby allowing students to appreciate the power of abstraction.

In 1992, 1 auempted to teach the introductory course using only the ANSI
libraries. The results were not encouraging. Each new topic required that the stu-
dent understand so much about the rest of C that there was no effective way to pre-
sent the material. For example, students had to understand the mechanics of arrays,
pointers, and allocation before they could use string data in any interesting way,
even though string manipulation is simpler conceptually. My best students managed
to understand what was going on by the end of the quarter. Most, however, did not.
Since we introduced the library-based approach in early 1993, students have assimi-
lated the material more easily and learned much more about computer science.

The library interfaces and associated implementations used in this text are
reprinted in Appendix B, which also gives instructions for obtaining the source
code electronically through anonymous FTP (File Transfer Protocol).

Xvi

