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Preface to the Third Edition

In this edition, we have added two new chapters, Chapter 7 on the gauge
group of a principal bundle and Chapter 19 on the definition of Chern classes
by differential forms. These subjects have taken on special importance when
we consider new applications of the fibre bundle theory especially to mathe-
matical physics. For these two chapters, the author profited from discussions
with Professor M. S. Narasimhan.

The idea of using the term bundle for what is just a map, but is eventually
a fibre bundle projection, is due to Grothendieck.

The bibliography has been enlarged and updated. For example, in the
Seifert reference [1932] we find one of the first explicit references to the
concept of fibrings.

The first edition of the Fibre Bundles was translated into Russian under
the title “Paccnoennsie TpoctpancTsa” in 1970 by B. A. MckoBckux with
general editor M. M. MocTtuukosa. The remarks and additions of the editor
have been very useful in this edition of the book. The author is very grateful
to A. Voronov, who helped with translations of the additions from the Rus-
sian text.

Part of this revision was made while the author was a guest of the Max
Planck Institut from 1988 to 89, the ETH during the summers of 1990 and
1991, the University of Heidelberg during the summer of 1992, and the Tata
Institute for Fundamental Research during January 1990, 1991, and 1992. It
is a pleasure to acknowledge all these institutions as well as the Haverford
College Faculty Research Fund.

1993 Dale Husemoller



Preface to the Second Edition

In this edition we have added a section to Chapter 15 on the Adams conjec-
ture and a second appendix on the suspension theorems. For the second
appendix the author profitted from discussion with Professors Moore,
Stashefl, and Toda.

I wish to express my gratitude to the following people who supplied me
with lists of corrections to the first edition: P. T. Chusch, Rudolf Fritsch,
David C. Johnson, George Lusztig, Claude Schocket, and Robert Sturg.

Part of the revision was made while the author was a guest of the LH.E.S
in January, May, and June 1974.

1974 Dale Husemoller



Preface to the First Edition

The notion of a fibre bundle first arose out of questions posed in the 1930s
on the topology and geometry of manifolds. By the year 1950, the definition
of fibre bundle had been clearly formulated, the homotopy classification
of fibre bundles achieved, and the theory of characteristic classes of fibre
bundles developed by several mathematicians: Chern, Pontrjagin, Stiefel, and
Whitney. Steenrod’s book, which appeared in 1950, gave a coherent treat-
ment of the subject up to that time.

About 1955, Milnor gave a construction of a universal fibre bundle for any
topological group. This construction is also included in Part I along with an
elementary proof that the bundle is universal.

During the five years from 1950 to 1955, Hirzebruch clarified the notion of
characteristic class and used it to prove a general Riemann-Roch theorem for
algebraic varieties. This was published in his Ergebnisse Monograph. A sys-
tematic development of characteristic classes and their applications to mani-
folds is given in Part III and is based on the approach of Hirzebruch as
modified by Grothendieck.

In the early 1960s, following lines of thought in the work of A.
Grothendieck, Atiyah and Hirzebruch developed K-theory, which is a gener-
alized cohomology theory defined by using stability classes of vector bun-
dles. The Bott periodicity theorem was interpreted as a theorem in K-theory,
and J. F. Adams was able to solve the vector field problem for spheres, using
K-theory. In Part II, an introduction to K-theory is presented, the nonexis-
tence of elements of Hopf invariant 1 proved (after a proof of Atiyah), and the
proof of the vector field problem sketched.

I wish to express gratitude to S. Eilenberg, who gave me so much encour-
agement during recent years, and to J. C. Moore, who read parts of the



xil Preface to the First Edition

manuscript and made many useful comments. Conversations with J. F. Adams,
R. Bott, A. Dold, and F. Hirzebruch helped to sharpen many parts of the
manuscript. During the writing of this book, I was particularly influenced by
the Princeton notes of J. Milnor and the lectures of F. Hirzebruch at the 1963
Summer Institute of the American Mathematical Society.

1966 Dale Husemoller
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